1
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
A monochromatic plane wave of wavelength $$\lambda = 600$$ is propagating in the direction as shown in the figure below. $${\overrightarrow E _i},\,{\overrightarrow E _r}$$ and $${\overrightarrow E _t}$$ denote incident, reflected, and transmitted electric field vectors associated with the wave. GATE ECE 2013 Electromagnetics - Uniform Plane Waves Question 27 English

The expression for $${\overrightarrow E _r}$$ is

A
$$0.23{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x - z} \right)} \over {3\sqrt 2 }}}}\,\,\,V/m$$
B
$$ - {{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,\,V/m$$
C
$$0.44{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x - z} \right)} \over {3\sqrt 2 }}}}\,\,\,V/m$$
D
$${{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over 3}}}\,\,V/m$$
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
A monochromatic plane wave of wavelength $$\lambda = 600$$ is propagating in the direction as shown in the figure below. $${\overrightarrow E _i},\,{\overrightarrow E _r}$$ and $${\overrightarrow E _t}$$ denote incident, reflected, and transmitted electric field vectors associated with the wave. GATE ECE 2013 Electromagnetics - Uniform Plane Waves Question 28 English

The angle of incidence $${\theta _i}$$ and the expression for $${\overrightarrow E _i}$$ are

A
$${60^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over {3\sqrt 2 }}}}\,\,V/m$$
B
$${45^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,V/m$$
C
$${45^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over {3\sqrt 2 }}}}\,\,V/m$$
D
$${60^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,V/m$$
3
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
The electric and magnetic fields for a TEM wave of frequency $$14 GHz$$ in a homogeneous medium of relative permittivity $${\varepsilon _r}$$ and relative permeability $${\mu _r} = 1$$ are given by $$$\overrightarrow E = {E_p}\,\,{e^{j\left( {\omega t - 280\pi y} \right)}}\,\,{\widehat u_z}\,\,V/m$$$ $$$\overrightarrow H = \,\,3\,\,{e^{j\left( {\omega \,t - 280\,\,\pi \,y} \right)}}\,\,\widehat u{\,_x}\,\,A/m$$$

Assuming the speed of light in free space to be $$3\,\, \times {10^8}\,\,\,m/s,$$ the intrinsic impedance of free space to be $$120\,\,\,\pi $$, the relative permittivity $${\varepsilon _r}$$ of the medium and the electric field amplitude $${E_p}$$ are

A
$${\varepsilon _r} = 3,\,\,{E_p} = 120\,\pi $$
B
$${\varepsilon _r} = 3,\,\,{E_p} = 360\,\pi $$
C
$${\varepsilon _r} = 9,\,\,{E_p} = 360\,\pi $$
D
$${\varepsilon _r} = 9,\,\,{E_p} = 120\,\pi $$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A plane wave having the electric field component $$${\overrightarrow E _i} = 24\,\,\cos \,\,\left( {3 \times {{10}^8}\,t - \beta \,y} \right){\widehat a_z}\,\,V/m$$$
and traveling in free space is incident normally on a lossless medium with $$\mu = {\mu _0}$$ and $$\varepsilon = 9\,\,{\varepsilon _0},$$ which occupies the region $$y \ge 0.$$ The reflected magnetic field component is given by
A
$${1 \over {10{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
B
$${1 \over {20{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
C
$$ - {1 \over {20{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
D
$$ - {1 \over {10{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12