1
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let the straight line $y=2 x$ touch a circle with center $(0, \alpha), \alpha>0$, and radius $r$ at a point $A_1$. Let $B_1$ be the point on the circle such that the line segment $A_1 B_1$ is a diameter of the circle. Let $\alpha+r=5+\sqrt{5}$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) $\alpha$ equals (1) $(-2, 4)$
(Q) $r$ equals (2) $\sqrt{5}$
(R) $A_1$ equals (3) $(-2, 6)$
(S) $B_1$ equals (4) $5$
(5) $(2, 4)$

The correct option is
A
$(\mathrm{P}) \rightarrow(4) \quad(\mathrm{Q}) \rightarrow(2) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(3)$
B
$(\mathrm{P}) \rightarrow(2) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(3)$
C
$(\mathrm{P}) \rightarrow(4) \quad(\mathrm{Q}) \rightarrow(2) \quad(\mathrm{R}) \rightarrow(5) \quad(\mathrm{S}) \rightarrow(3)$
D
$(\mathrm{P}) \rightarrow(2) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(3) \quad(\mathrm{S}) \rightarrow(5)$
2
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $\gamma \in \mathbb{R}$ be such that the lines $L_1: \frac{x+11}{1}=\frac{y+21}{2}=\frac{z+29}{3}$ and $L_2: \frac{x+16}{3}=\frac{y+11}{2}=\frac{z+4}{\gamma}$ intersect. Let $R_1$ be the point of intersection of $L_1$ and $L_2$. Let $O=(0,0,0)$, and $\hat{n}$ denote a unit normal vector to the plane containing both the lines $L_1$ and $L_2$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) $\gamma$ equals (1) $-\hat{i} - \hat{j} + \hat{k}$
(Q) A possible choice for $\hat{n}$ is (2) $\sqrt{\frac{3}{2}}$
(R) $\overrightarrow{OR_1}$ equals (3) $1$
(S) A possible value of $\overrightarrow{OR_1} \cdot \hat{n}$ is (4) $\frac{1}{\sqrt{6}} \hat{i} - \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k}$
(5) $\sqrt{\frac{2}{3}}$

The correct option is :
A
$(\mathrm{P}) \rightarrow(3) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(2)$
B
$(\mathrm{P}) \rightarrow(5) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(2)$
C
$(\mathrm{P}) \rightarrow(3) \quad$ (Q) $\rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad$ (S) $\rightarrow(5)$
D
$(\mathrm{P}) \rightarrow(3) \quad(\mathrm{Q}) \rightarrow(1) \quad(\mathrm{R}) \rightarrow(4) \quad$ (S) $\rightarrow(5)$
3
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by

$$ f(x)=\left\{\begin{array}{ll} x|x| \sin \left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x=0, \end{array} \quad \text { and } g(x)= \begin{cases}1-2 x, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \text { otherwise } .\end{cases}\right. $$

Let $a, b, c, d \in \mathbb{R}$. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$ h(x)=a f(x)+b\left(g(x)+g\left(\frac{1}{2}-x\right)\right)+c(x-g(x))+d g(x), x \in \mathbb{R} . $$

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) If $a = 0$, $b = 1$, $c = 0$, and $d = 0$, then (1) $h$ is one-one.
(Q) If $a = 1$, $b = 0$, $c = 0$, and $d = 0$, then (2) $h$ is onto.
(R) If $a = 0$, $b = 0$, $c = 1$, and $d = 0$, then (3) $h$ is differentiable on $\mathbb{R}$.
(S) If $a = 0$, $b = 0$, $c = 0$, and $d = 1$, then (4) the range of $h$ is $[0, 1]$.
(5) the range of $h$ is $\{0, 1\}$.

The correct option is
A
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(1)$ (S) $\rightarrow$ (2)
B
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(4)$ (S) $\rightarrow(3)$
C
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(2)$ $(\mathrm{S}) \rightarrow(4)$
D
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(1)$ $(\mathrm{S}) \rightarrow(3)$
4
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

A dimensionless quantity is constructed in terms of electronic charge $e$, permittivity of free space $\varepsilon_0$, Planck's constant $h$, and speed of light $c$. If the dimensionless quantity is written as $e^\alpha \varepsilon_0{ }^\beta h^\gamma c^\delta$ and $n$ is a non-zero integer, then $(\alpha, \beta, \gamma, \delta)$ is given by :

A
$(2 n,-n,-n,-n)$
B
$(n,-n,-2 n,-n)$
C
$(n,-n,-n,-2 n)$
D
$(2 n,-n,-2 n,-2 n)$
JEE Advanced Papers
EXAM MAP