IIT-JEE 2010 Paper 2 Offline
Paper was held on Sun, Apr 11, 2010 9:00 AM
View Questions

Chemistry

1
The species having pyramidal shape is
2
Silver (atomic weight = 108 g mol-1) has a density of 10.5 g.cm-3. The number of silver atoms on a surface of area 10-12 m2 can be expressed in scientific notation as y $$\times$$ 10x. The value of x is?
3
The hydrogen like species Li2+ is in a spherically symmetric state S1 with one radial node. Upon absorbing light the ion undergoes transition to a state S2. The state S2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

The state S1 is :
4
The hydrogen like species Li2+ is in a spherically symmetric state S1 with one radial node. Upon absorbing light the ion undergoes transition to a state S2. The state S2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

Energy of the state S1 in units of the hydrogen atom ground state energy is:
5
The hydrogen like species Li2+ is in a spherically symmetric state S1 with one radial node. Upon absorbing light the ion undergoes transition to a state S2. The state S2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

The orbital angular momentum quantum number of the state S2 is
6
Among the following, the number of elements showing only one non-zero oxidation state is :
O, Cl, F, N, P, Sn, Tl, Na, Ti
7
Assuming that Hund’s rule is violated, the bond order and magnetic nature of the diatomic molecule B2 is
8

The total number of diprotic acids among the following is:

H3PO4, H2SO4, H3PO3, H2CO3, H2S2O7, H3BO3, H3PO2, H2CrO4 and H2SO3

9
The compounds $\mathbf{P}, \mathbf{Q}$ and $\mathbf{S}$ were separately subjected to nitration using $\mathrm{HNO}_3 / \mathrm{H}_2 \mathrm{SO}_4$ mixture. The major product formed in each case respectively, is :

10
The packing efficiency of the twodimensional square unit cell shown below is IIT-JEE 2010 Paper 2 Offline Chemistry - Solid State Question 1 English
11
The complex showing a spin-only magnetic moment of 2.82 B.M. is :
12

In the reaction,

IIT-JEE 2010 Paper 2 Offline Chemistry - Compounds Containing Nitrogen Question 2 English

The structure of the product T is :

13

One mole of an ideal gas is taken from $\mathbf{a}$ to $\mathbf{b}$ along two paths denoted by the solid and the dashed lines as shown in the graph below. If the work done along the solid line path is $W_{\text {s }}$ and that dotted line path is $W_{\mathrm{d}}$, then the integer closest to the ratio $W_{\mathrm{d}} / W_{\mathrm{s}}$ is

IIT-JEE 2010 Paper 2 Offline Chemistry - Thermodynamics Question 1 English
14
Total number of geometrical isomers for the complex $\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_3\right)\left(\mathrm{NH}_3\right)\right]$ is ___________.
15
The compounds P and Q respectively are :
16
The compound R is :
17
The compound S is :
18
Match the reactions in Column I with appropriate options in Column II.
Column I Column II
(A)
IIT-JEE 2010 Paper 2 Offline Chemistry - Compounds Containing Nitrogen Question 1 English 1
(P) Racemic mixture
(B)
IIT-JEE 2010 Paper 2 Offline Chemistry - Compounds Containing Nitrogen Question 1 English 2
(Q) Addition reaction
(C)
IIT-JEE 2010 Paper 2 Offline Chemistry - Compounds Containing Nitrogen Question 1 English 3
(R) Substitution reaction
(D)
IIT-JEE 2010 Paper 2 Offline Chemistry - Compounds Containing Nitrogen Question 1 English 4
(S) Coupling reaction
19

All the compounds listed in Column I react with water. Match the result of the respective reactions with the appropriate options listed in Column II.

Column I Column II
(A) (CH3)2SiCl2 (P) Hydrogen halide formation
(B) XeF4 (Q) Redox reaction
(C) Cl2 (R) Reacts with glass
(D) VCl5 (S) Polymerisation
(T) O2 formation

Mathematics

1
Match the statement in Column-$$I$$ with the values in Column-$$II$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line from the origin meets the lines $$\,{{x - 2} \over 1} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$
and $${{x - {8 \over 3}} \over 2} = {{y + 3} \over { - 1}} = {{z - 1} \over 1}$$ at $$P$$ and $$Q$$ respectively. If length $$PQ=d,$$ then $${d^2}$$ is
(B)$$\,\,\,\,$$ The values of $$x$$ satisfying $${\tan ^{ - 1}}\left( {x + 3} \right) - {\tan ^{ - 1}}\left( {x - 3} \right) = {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ are
(C)$$\,\,\,\,$$ Non-zero vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c \,\,$$ satisfy $$\overrightarrow a \,.\,\overrightarrow b \, = 0.$$
$$\left( {\overrightarrow b - \overrightarrow a } \right).\left( {\overrightarrow b + \overrightarrow c } \right) = 0$$ and $$2\left| {\overrightarrow b + \overrightarrow c } \right| = \left| {\overrightarrow b - \overrightarrow a } \right|.$$
If $$\overrightarrow a = \mu \overrightarrow b + 4\overrightarrow c \,\,,$$ then the possible values of $$\mu $$ are
(D)$$\,\,\,\,$$ Let $$f$$ be the function on $$\left[ { - \pi ,\pi } \right]$$ given by $$f(0)=9$$
and $$f\left( x \right) = \sin \left( {{{9x} \over 2}} \right)/\sin \left( {{x \over 2}} \right)$$ for $$x \ne 0$$
The value of $${2 \over \pi }\int_{ - \pi }^\pi {f\left( x \right)dx} $$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,$$ $$-4$$
(q)$$\,\,\,\,$$ $$0$$
(r)$$\,\,\,\,$$ $$4$$
(s)$$\,\,\,\,$$ $$5$$
(t)$$\,\,\,\,$$ $$6$$

2
Match the statements in Column I with those in Column II.

[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]

Column I


(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.

Column II


(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
3
Consider a triangle $$ABC$$ and let $$a, b$$ and $$c$$ denote the lengths of the sides opposit to vertices $$A, B$$ and $$C$$ respectively. Suppose $$a = 6,b = 10$$ and the area of the triangle is $$15\sqrt 3 $$, if $$\angle ACB$$ is obtuse and if $$r$$ denotes the radius of the incircle of the triangle, then r2 is equal to :
4
If the distance of the point $$P(1, -2, 1)$$ from the plane $$x+2y-2z$$$$\, = \alpha ,$$ where $$\alpha > 0,$$ is $$5,$$ then the foot of the perpendicular from $$P$$ to the planes is
5
Two parallel chords of a circle of radius 2 are at a distance $$\sqrt 3 + 1$$ apart. If the chords subtend at the center , angles of $${\pi \over k}$$ and $${{2\pi } \over k},$$ where$$k > 0,$$ then the value of $$\left[ k \right]$$ is

[Note :[k] denotes the largest integer less than or equal to k ]

6
For $$r = 0,\,1,....,$$ let $${A_r},\,{B_r}$$ and $${C_r}$$ denote, respectively, the coefficient of $${X^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},$$ $${\left( {1 + x} \right)^{20}}$$ and $${\left( {1 + x} \right)^{30}}.$$
Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
7
Let $${a_1},\,{a_{2\,}},\,{a_3}$$......,$${a_{11}}$$ be real numbers satisfying $${a_1} = 15,27 - 2{a_2} > 0\,\,and\,\,{a_k} = 2{a_{k - 1}} - {a_{k - 2}}\,\,for\,k = 3,4,........11$$. if $$\,\,\,{{a_1^2 + a_2^2 + .... + a_{11}^2} \over {11}} = 90$$, then the value of $${{{a_1} + {a_2} + .... + {a_{11}}} \over {11}}$$ is equal to :
8

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The coordinates of $$A$$ and $$B$$ are

9

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The equation of the locus of the point whose distances from the point $$P$$ and the line $$AB$$ are equal, is

10
Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The orthocentre of the triangle $$PAB$$ is

11
Let $$f$$ be a function defined on $$R$$ (the set of all real numbers)
such that $$f'\left( x \right) = 2010\left( {x - 2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}$$ for all $$x \in $$$$R$$

If $$g$$ is a function defined on $$R$$ with values in the interval $$\left( {0,\infty } \right)$$ such that $$$f\left( x \right) = ln\,\left( {g\left( x \right)} \right),\,\,for\,\,all\,\,x \in R$$$
then the number of points in $$R$$ at which $$g$$ has a local maximum is ___________.

12
Let $$f$$ be a real-valued function defined on the interval $$(-1, 1)$$ such that
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
13

Let $k$ be a positive real number and let

$$ \begin{aligned} A & =\left[\begin{array}{ccc} 2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1 \end{array}\right] \text { and } \\\\ \mathbf{B} & =\left[\begin{array}{ccc} 0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \sqrt{k} \\ -\sqrt{k} & -2 \sqrt{k} & 0 \end{array}\right] . \end{aligned} $$

If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=10^6$, then $[k]$

is equal to _________.

[ Note : adj M denotes the adjoint of a square matrix M and $[k]$ denotes the largest integer less than or equal to $k$ ].

14
Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of $S$ is equal to :
15

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The real numbers lies in the interval

16

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The area bounded by the curve $$y=f(x)$$ and the lines $$x=0,$$ $$y=0$$ and $$x=t,$$ lies in the interval

17

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The function$$f'(x)$$ is

18
A signal which can be green or red with probability $${4 \over 5}$$ and $${1 \over 5}$$ respectively, is received by station A and then transmitted to station $$B$$. The probability of each station receving the signal correctly is $${3 \over 4}$$. If the signal received at atation $$B$$ is green, then the probability that the original signal was green is
19
Two adjacent sides of a parallelogram $$ABCD$$ are given by
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrightarrow {AD} = -\widehat i + 2\widehat j + 2\widehat k$$
The side $$AD$$ is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$ becomes $$AD'.$$ If $$AD'$$ makes a right angle with the side $$AB,$$ then the cosine of the angle $$\alpha $$ is given by

Physics

1
A vernier calipers has 1 mm marks on the main scale. It has 20 equal divisions on the Vernier scale which match with 16 main scale divisions. For this Vernier calipers, the least count is
2
When liquid medicine of density $$\rho $$ is to be put in the eye, it is done with the help of a dropper. As the bulb on the top of the dropper is pressed, a drop forms at the opening of the dropper. We wish to estimate the size of the drop. We first assume that the drop formed at the opening is spherical because that requires a minimum increase in its surface energy. To determine the size, we calculate the net vertical force due to the surface tension T when the radius of the drop is R. When the force becomes smaller than the weight of the drop, the drop gets detached from the dropper.

If the radius of the opening of the dropper is $$r$$, the vertical force due to the surface tension on the drop of radius R (assuming $$r$$ << R) is

3
When liquid medicine of density $$\rho $$ is to be put in the eye, it is done with the help of a dropper. As the bulb on the top of the dropper is pressed, a drop forms at the opening of the dropper. We wish to estimate the size of the drop. We first assume that the drop formed at the opening is spherical because that requires a minimum increase in its surface energy. To determine the size, we calculate the net vertical force due to the surface tension T when the radius of the drop is R. When the force becomes smaller than the weight of the drop, the drop gets detached from the dropper.

If r = 5 $$ \times $$ 10−4 m, $$\rho $$ = 103 kg m−3 , g = 10 m/s2 , T = 0.11 Nm−1 , the radius of the drop when it detaches from the dropper is approximately

4
When liquid medicine of density $$\rho $$ is to be put in the eye, it is done with the help of a dropper. As the bulb on the top of the dropper is pressed, a drop forms at the opening of the dropper. We wish to estimate the size of the drop. We first assume that the drop formed at the opening is spherical because that requires a minimum increase in its surface energy. To determine the size, we calculate the net vertical force due to the surface tension T when the radius of the drop is R. When the force becomes smaller than the weight of the drop, the drop gets detached from the dropper.

After the drop detaches, its surface energy is

5
A diatomic ideal gas is compressed adiabatically $${1 \over {32}}$$ of its initial volume. If the initial temperature of the gas is Ti (in Kelvin) and the final temperature is a Ti, the value of $$a$$ is
6
A hollow pipe of length 0.8 m is closed at one end. At its open end a 0.5 m long uniform string is vibrating in its second harmonic and it resonates with the fundamental frequency of the pipe. If the tension in the wire is 50 N and the speed of sound is 320 ms−1, the mass of the string is
7
A tiny spherical oil drop carrying a net charge $$q$$ is balanced in still air with a vertical uniform electric field of strength $${{81\pi } \over 7} \times {10^5}\,\,V{m^{ - 1}}.$$ When the field is switched off, the drop is observed to fall with terminal velocity $$2 \times {10^{ - 3}}\,\,m{s^{ - 1}}.$$ Given $$g = 9.8\,m\,{s^{ - 2}},$$ viscosity of the air $$ = 1.8 \times {10^{ - 5}}\,\,Ns\,{m^{ - 2}}$$ and the density of coil $$=900$$ $$kg$$ $${m^{ - 3}},$$ the magnitude of $$q$$ is
8
A uniformly charged thin spherical shell of radius $$R$$ carries uniform surface charge density of $$\sigma $$ per unit area. It is made of two hemispherical shells, held together by pressing them with force $$F$$ (see figure). $$F$$ is proportional to

IIT-JEE 2010 Paper 2 Offline Physics - Electrostatics Question 58 English
9

A block of mass 2 kg is free to move along the x-axis. It is at rest and from t = 0 onwards, it is subjected to a time-dependent force F(t) in the x-direction. The force F(t) varies with t as shown in the figure. The kinetic energy of the block after 4.5 s is

IIT-JEE 2010 Paper 2 Offline Physics - Work Power & Energy Question 5 English

10

A biconvex lens of focal length 15 cm is in front of a plane mirror. The distance between the lens and the mirror is 10 cm. A small object is kept at a distance of 30 cm from the lens. The final image is

11

A large glass slab ($$\mu$$ = 5/3) of thickness 8 cm is placed over a point source of light on a plane surface. It is seen that light emerges out of the top surface of the slab from a circular area of radius R cm. What is the value of R?

12

Image of an object approaching a convex mirror of radius of curvature 20 m along its optical axis is observed to move from $${{25} \over 3}$$ m to $${{50} \over 7}$$ m in 30 s. What is the speed of the object in km per hour?

13

To determine the half-life of a radioactive element, a student plots a graph of $$\ln \left| {{{dN(t)} \over {dt}}} \right|$$ versus t. Here, $${{dN(t)} \over {dt}}$$ is the rate of radioactive decay at time t. If the number of radioactive nuclei of this element decreases by a factor of p after 4.16 years, the value of p is __________.

IIT-JEE 2010 Paper 2 Offline Physics - Atoms and Nuclei Question 19 English

14

At time t = 0, a battery of 10 V is connected across points A and B in the given circuit. If the capacitors have no charge initially, at what time (in seconds) does the voltage across them becomes 4 V? (Take ln5 = 1.6, ln3 = 1.1)

IIT-JEE 2010 Paper 2 Offline Physics - Capacitor Question 5 English

15

A diatomic molecule has moment of inertia I. By Bohr's quantization condition, its rotational energy in the nth level (n = 0 is not allowed) is

16

It is found that the excitation frequency from ground to the first excited state of rotation for the CO molecule is close to $${4 \over \pi } \times {10^{11}}$$ Hz. Then, the moment of inertia of CO molecule about its centre of mass is close to (Take h = 2$$\pi$$ $$\times$$ 10$$-$$34 J-s)

17

In a CO molecule, the distance between C (mass = 12 amu) and O (mass = 16 amu), where 1 amu $$ = {5 \over 3} \times {10^{ - 27}}$$ kg, is close to :

18

Two transparent media of refractive indices $\mu_1$ and $\mu_3$ have a solid lens shaped transparent material of refractive index $\mu_2$ between them as shown in figures in Column II. A ray traversing these media is also shown in the figures. In Column I different relationships between $\mu_1, \mu_2$ and $\mu_3$ are given. Match them to the ray diagram shown in Column II :

IIT-JEE 2010 Paper 2 Offline Physics - Geometrical Optics Question 1 English 1 IIT-JEE 2010 Paper 2 Offline Physics - Geometrical Optics Question 1 English 2
19

You are given many resistances, capacitors and inductors. These are connected to a variable DC voltage source (the first two circuits) or an AC voltage source of 50 Hz frequency (the next three circuits) in different ways as shown in Column II. When a current I (steady state for DC or rms for AC) flows through the circuit, the corresponding voltage $V_1$ and $V_2$ (indicated in circuits) are related as shown in Column I. Match the two :

IIT-JEE 2010 Paper 2 Offline Physics - Alternating Current Question 1 English 1 IIT-JEE 2010 Paper 2 Offline Physics - Alternating Current Question 1 English 2
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12