1
JEE Advanced 2024 Paper 1 Online
Numerical
+4
-0
Change Language

A group of 9 students, $s_1, s_2, \ldots, s_9$, is to be divided to form three teams $X, Y$, and $Z$ of sizes 2,3 , and 4 , respectively. Suppose that $s_1$ cannot be selected for the team $X$, and $s_2$ cannot be selected for the team $Y$. Then the number of ways to form such teams, is ____________.

Your input ____
2
JEE Advanced 2024 Paper 1 Online
Numerical
+4
-0
Change Language

Let $\overrightarrow{O P}=\frac{\alpha-1}{\alpha} \hat{i}+\hat{j}+\hat{k}, \overrightarrow{O Q}=\hat{i}+\frac{\beta-1}{\beta} \hat{j}+\hat{k}$ and $\overrightarrow{O R}=\hat{i}+\hat{j}+\frac{1}{2} \hat{k}$ be three vectors, where $\alpha, \beta \in \mathbb{R}-\{0\}$ and $O$ denotes the origin. If $(\overrightarrow{O P} \times \overrightarrow{O Q}) \cdot \overrightarrow{O R}=0$ and the point $(\alpha, \beta, 2)$ lies on the plane $3 x+3 y-z+l=0$, then the value of $l$ is ____________.

Your input ____
3
JEE Advanced 2024 Paper 1 Online
Numerical
+4
-0
Change Language

Let $X$ be a random variable, and let $P(X=x)$ denote the probability that $X$ takes the value $x$. Suppose that the points $(x, P(X=x)), x=0,1,2,3,4$, lie on a fixed straight line in the $x y$-plane, and $P(X=x)=0$ for all $x \in \mathbb{R}-\{0,1,2,3,4\}$. If the mean of $X$ is $\frac{5}{2}$, and the variance of $X$ is $\alpha$, then the value of $24 \alpha$ is _____________.

Your input ____
4
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $\alpha$ and $\beta$ be the distinct roots of the equation $x^2+x-1=0$. Consider the set $T=\{1, \alpha, \beta\}$. For a $3 \times 3$ matrix $M=\left(a_{i j}\right)_{3 \times 3}$, define $R_i=a_{i 1}+a_{i 2}+a_{i 3}$ and $C_j=a_{1 j}+a_{2 j}+a_{3 j}$ for $i=1,2,3$ and $j=1,2,3$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) The number of matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ R_i = C_j = 0 $ for all $ i, j $, is (1) 1
(Q) The number of symmetric matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ C_j = 0 $ for all $ j $, is (2) 12
(R) Let $ M = (a_{ij})_{3x3} $ be a skew symmetric matrix such that $ a_{ij} \in T $ for $ i > j $.

Then the number of elements in the set

$ \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{12} \\ 0 \\ a_{13} \end{pmatrix} \right\} $ is
(3) infinite
(S) Let $ M = (a_{ij})_{3x3} $ be a matrix with all entries in $ T $ such that $ R_i = 0 $ for all $ i $. Then the absolute value of the determinant of $ M $ is (4) 6

The correct option is
A
(P) $\rightarrow$ (4) $\quad$ (Q) $\rightarrow(2) \quad(\mathrm{R}) \rightarrow(5) \quad$ (S) $\rightarrow$ (1)
B
$(\mathrm{P}) \rightarrow(2) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(5)$
C
$(\mathrm{P}) \rightarrow(2) \quad$ (Q) $\rightarrow(4) \quad(\mathrm{R}) \rightarrow(3) \quad$ (S) $\rightarrow$ (5)
D
(P) $\rightarrow$ (1) $\quad$ (Q) $\rightarrow$ (5) $\quad$ (R) $\rightarrow$ (3) $\quad$ (S) $\rightarrow$ (4)
JEE Advanced Papers
EXAM MAP