Let $\overrightarrow{O P}=\frac{\alpha-1}{\alpha} \hat{i}+\hat{j}+\hat{k}, \overrightarrow{O Q}=\hat{i}+\frac{\beta-1}{\beta} \hat{j}+\hat{k}$ and $\overrightarrow{O R}=\hat{i}+\hat{j}+\frac{1}{2} \hat{k}$ be three vectors, where $\alpha, \beta \in \mathbb{R}-\{0\}$ and $O$ denotes the origin. If $(\overrightarrow{O P} \times \overrightarrow{O Q}) \cdot \overrightarrow{O R}=0$ and the point $(\alpha, \beta, 2)$ lies on the plane $3 x+3 y-z+l=0$, then the value of $l$ is ____________.
Let $X$ be a random variable, and let $P(X=x)$ denote the probability that $X$ takes the value $x$. Suppose that the points $(x, P(X=x)), x=0,1,2,3,4$, lie on a fixed straight line in the $x y$-plane, and $P(X=x)=0$ for all $x \in \mathbb{R}-\{0,1,2,3,4\}$. If the mean of $X$ is $\frac{5}{2}$, and the variance of $X$ is $\alpha$, then the value of $24 \alpha$ is _____________.
Match each entry in List-I to the correct entry in List-II.
List-I | List-II |
---|---|
(P) The number of matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ R_i = C_j = 0 $ for all $ i, j $, is | (1) 1 |
(Q) The number of symmetric matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ C_j = 0 $ for all $ j $, is | (2) 12 |
(R) Let $ M = (a_{ij})_{3x3} $ be a skew symmetric matrix such that $ a_{ij} \in T $ for $ i > j $. Then the number of elements in the set $ \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{12} \\ 0 \\ a_{13} \end{pmatrix} \right\} $ is |
(3) infinite |
(S) Let $ M = (a_{ij})_{3x3} $ be a matrix with all entries in $ T $ such that $ R_i = 0 $ for all $ i $. Then the absolute value of the determinant of $ M $ is | (4) 6 |
The correct option is
Let the straight line $y=2 x$ touch a circle with center $(0, \alpha), \alpha>0$, and radius $r$ at a point $A_1$. Let $B_1$ be the point on the circle such that the line segment $A_1 B_1$ is a diameter of the circle. Let $\alpha+r=5+\sqrt{5}$.
Match each entry in List-I to the correct entry in List-II.
List-I | List-II |
---|---|
(P) $\alpha$ equals | (1) $(-2, 4)$ |
(Q) $r$ equals | (2) $\sqrt{5}$ |
(R) $A_1$ equals | (3) $(-2, 6)$ |
(S) $B_1$ equals | (4) $5$ |
(5) $(2, 4)$ |
The correct option is