1
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $\alpha$ and $\beta$ be the distinct roots of the equation $x^2+x-1=0$. Consider the set $T=\{1, \alpha, \beta\}$. For a $3 \times 3$ matrix $M=\left(a_{i j}\right)_{3 \times 3}$, define $R_i=a_{i 1}+a_{i 2}+a_{i 3}$ and $C_j=a_{1 j}+a_{2 j}+a_{3 j}$ for $i=1,2,3$ and $j=1,2,3$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) The number of matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ R_i = C_j = 0 $ for all $ i, j $, is (1) 1
(Q) The number of symmetric matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ C_j = 0 $ for all $ j $, is (2) 12
(R) Let $ M = (a_{ij})_{3x3} $ be a skew symmetric matrix such that $ a_{ij} \in T $ for $ i > j $.

Then the number of elements in the set

$ \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{12} \\ 0 \\ a_{13} \end{pmatrix} \right\} $ is
(3) infinite
(S) Let $ M = (a_{ij})_{3x3} $ be a matrix with all entries in $ T $ such that $ R_i = 0 $ for all $ i $. Then the absolute value of the determinant of $ M $ is (4) 6

The correct option is
A
(P) $\rightarrow$ (4) $\quad$ (Q) $\rightarrow(2) \quad(\mathrm{R}) \rightarrow(5) \quad$ (S) $\rightarrow$ (1)
B
$(\mathrm{P}) \rightarrow(2) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(5)$
C
$(\mathrm{P}) \rightarrow(2) \quad$ (Q) $\rightarrow(4) \quad(\mathrm{R}) \rightarrow(3) \quad$ (S) $\rightarrow$ (5)
D
(P) $\rightarrow$ (1) $\quad$ (Q) $\rightarrow$ (5) $\quad$ (R) $\rightarrow$ (3) $\quad$ (S) $\rightarrow$ (4)
2
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let the straight line $y=2 x$ touch a circle with center $(0, \alpha), \alpha>0$, and radius $r$ at a point $A_1$. Let $B_1$ be the point on the circle such that the line segment $A_1 B_1$ is a diameter of the circle. Let $\alpha+r=5+\sqrt{5}$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) $\alpha$ equals (1) $(-2, 4)$
(Q) $r$ equals (2) $\sqrt{5}$
(R) $A_1$ equals (3) $(-2, 6)$
(S) $B_1$ equals (4) $5$
(5) $(2, 4)$

The correct option is
A
$(\mathrm{P}) \rightarrow(4) \quad(\mathrm{Q}) \rightarrow(2) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(3)$
B
$(\mathrm{P}) \rightarrow(2) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(3)$
C
$(\mathrm{P}) \rightarrow(4) \quad(\mathrm{Q}) \rightarrow(2) \quad(\mathrm{R}) \rightarrow(5) \quad(\mathrm{S}) \rightarrow(3)$
D
$(\mathrm{P}) \rightarrow(2) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(3) \quad(\mathrm{S}) \rightarrow(5)$
3
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $\gamma \in \mathbb{R}$ be such that the lines $L_1: \frac{x+11}{1}=\frac{y+21}{2}=\frac{z+29}{3}$ and $L_2: \frac{x+16}{3}=\frac{y+11}{2}=\frac{z+4}{\gamma}$ intersect. Let $R_1$ be the point of intersection of $L_1$ and $L_2$. Let $O=(0,0,0)$, and $\hat{n}$ denote a unit normal vector to the plane containing both the lines $L_1$ and $L_2$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) $\gamma$ equals (1) $-\hat{i} - \hat{j} + \hat{k}$
(Q) A possible choice for $\hat{n}$ is (2) $\sqrt{\frac{3}{2}}$
(R) $\overrightarrow{OR_1}$ equals (3) $1$
(S) A possible value of $\overrightarrow{OR_1} \cdot \hat{n}$ is (4) $\frac{1}{\sqrt{6}} \hat{i} - \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k}$
(5) $\sqrt{\frac{2}{3}}$

The correct option is :
A
$(\mathrm{P}) \rightarrow(3) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(2)$
B
$(\mathrm{P}) \rightarrow(5) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(2)$
C
$(\mathrm{P}) \rightarrow(3) \quad$ (Q) $\rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad$ (S) $\rightarrow(5)$
D
$(\mathrm{P}) \rightarrow(3) \quad(\mathrm{Q}) \rightarrow(1) \quad(\mathrm{R}) \rightarrow(4) \quad$ (S) $\rightarrow(5)$
4
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by

$$ f(x)=\left\{\begin{array}{ll} x|x| \sin \left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x=0, \end{array} \quad \text { and } g(x)= \begin{cases}1-2 x, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \text { otherwise } .\end{cases}\right. $$

Let $a, b, c, d \in \mathbb{R}$. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$ h(x)=a f(x)+b\left(g(x)+g\left(\frac{1}{2}-x\right)\right)+c(x-g(x))+d g(x), x \in \mathbb{R} . $$

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) If $a = 0$, $b = 1$, $c = 0$, and $d = 0$, then (1) $h$ is one-one.
(Q) If $a = 1$, $b = 0$, $c = 0$, and $d = 0$, then (2) $h$ is onto.
(R) If $a = 0$, $b = 0$, $c = 1$, and $d = 0$, then (3) $h$ is differentiable on $\mathbb{R}$.
(S) If $a = 0$, $b = 0$, $c = 0$, and $d = 1$, then (4) the range of $h$ is $[0, 1]$.
(5) the range of $h$ is $\{0, 1\}$.

The correct option is
A
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(1)$ (S) $\rightarrow$ (2)
B
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(4)$ (S) $\rightarrow(3)$
C
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(2)$ $(\mathrm{S}) \rightarrow(4)$
D
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(1)$ $(\mathrm{S}) \rightarrow(3)$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12