1
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

A student appears for a quiz consisting of only true-false type questions and answers all the questions. The student knows the answers of some questions and guesses the answers for the remaining questions. Whenever the student knows the answer of a question, he gives the correct answer. Assume that the probability of the student giving the correct answer for a question, given that he has guessed it, is $\frac{1}{2}$. Also assume that the probability of the answer for a question being guessed, given that the student's answer is correct, is $\frac{1}{6}$. Then the probability that the student knows the answer of a randomly chosen question is :

A
$\frac{1}{12}$
B
$\frac{1}{7}$
C
$\frac{5}{7}$
D
$\frac{5}{12}$
2
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then

$$ \left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x) $$

is equal to :

A
$\frac{\sqrt{11}-1}{2 \sqrt{3}}$
B
$\frac{\sqrt{11}+1}{2 \sqrt{3}}$
C
$\frac{\sqrt{11}+1}{3 \sqrt{2}}$
D
$\frac{\sqrt{11}-1}{3 \sqrt{2}}$
3
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the first quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. Two tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?

A
$q=2, p=3 \sqrt{3}$
B
$q=2, p=4 \sqrt{3}$
C
$q=1, p=5 \sqrt{3}$
D
$q=1, p=6 \sqrt{3}$
4
JEE Advanced 2024 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $S=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}, T_1=\left\{(-1+\sqrt{2})^n: n \in \mathbb{N}\right\}$, and $T_2=\left\{(1+\sqrt{2})^n: n \in \mathbb{N}\right\}$. Then which of the following statements is (are) TRUE?
A
$\mathbb{Z} \cup T_1 \cup T_2 \subset S$
B
$T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set.
C
$T_2 \cap(2024, \infty) \neq \phi$
D
For any given $a, b \in \mathbb{Z}, \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in \mathbb{Z}$ if and only if $b=0$, where $i=\sqrt{-1}$.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12