IIT-JEE 2004 Screening
Paper was held on Sun, Apr 11, 2004 9:00 AM
View Questions

Chemistry

Mathematics

1
The area enclosed between the curves $$y = a{x^2}$$ and
$$x = a{y^2}\left( {a > 0} \right)$$ is $$1$$ sq. unit, then the value of $$a$$ is
2
If $$f(x)$$ is differentiable and $$\int\limits_0^{{t^2}} {xf\left( x \right)dx = {2 \over 5}{t^5},} $$ then $$f\left( {{4 \over {25}}} \right)$$ equals
3
If $$y=y(x)$$ and $${{2 + \sin x} \over {y + 1}}\left( {{{dy} \over {dx}}} \right) = - \cos x,y\left( 0 \right) = 1,$$
then $$y\left( {{\pi \over 2}} \right)$$ equals
4
If three distinct numbers are chosen randomly from the first $$100$$ natural numbers, then the probability that all three of them are divisible by both $$2$$ and $$3$$ is
5
If $$\overrightarrow a = \left( {\widehat i + \widehat j + \widehat k} \right),\overrightarrow a .\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat j - \widehat k,$$ then $$\overrightarrow b $$ is
6
If the lines $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 4}$$ and $$\,{{x - 3} \over 1} = {{y - k} \over 2} = {z \over 1}$$ intersect, then the value of $$k$$ is
7
The unit vector which is orthogonal to the vector $$3\overrightarrow i + 2\overrightarrow j + 6\overrightarrow k $$ and is coplanar with the vectors $$\,2\widehat i + \widehat j + \widehat k$$ and $$\,\widehat i - \widehat j + \widehat k$$$$\,\,\,$$ is
8
The value of the integral $$\int\limits_0^1 {\sqrt {{{1 - x} \over {1 + x}}} dx} $$ is
9
If $$\omega $$ $$\left( { \ne 1} \right)$$ be a cube root of unity and $${\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n},$$ then the least positive value of n is
10
If $$f\left( x \right) = {x^a}\log x$$ and $$f\left( 0 \right) = 0,$$ then the value of $$\alpha $$ for which Rolle's theorem can be applied in $$\left[ {0,1} \right]$$ is
11
If $$f\left( x \right) = {x^3} + b{x^2} + cx + d$$ and $$0 < {b^2} < c,$$ then in $$\left( { - \infty ,\infty } \right)$$
12
The value of $$x$$ for which $$sin\left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}\,x} \right)$$ is
13
The sides of a triangle are in the ratio $$1:\sqrt 3 :2$$, then the angles of the triangle are in the ratio
14
If $$y$$ is a function of $$x$$ and log $$(x+y)-2xy=0$$, then the value of $$y'(0)$$ is equal to
15
If the line $$62x + \sqrt 6 y = 2$$ touches the hyperbola $${x^2} - 2{y^2} = 4$$, then the point of contact is
16
If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$ then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is
17
The angle between the tangents drawn from the point $$(1, 4)$$ to the parabola $${y^2} = 4x$$ is
18
If one of the diameters of the circle $${x^2} + {y^2} - 2x - 6y + 6 = 0$$ is a chord to the circle with centre (2, 1), then the radius of the circle is
19
Area of the triangle formed by the line $$x + y = 3$$ and angle bisectors of the pair of straight line $${x^2} - {y^2} + 2y = 1$$ is
20
An infinite G.P. has first term '$$x$$' and sum '$$5$$', then $$x$$ belongs to
21
If $${}^{n - 1}{C_r} = \left( {{k^2} - 3} \right)\,{}^n{C_{r + 1,}}$$ then $$k \in $$
22
For all $$'x',{x^2} + 2ax + 10 - 3a > 0,$$ then the interval in which '$$a$$' lies is
23
If one root is square of the other root of the equation $${x^2} + px + q = 0$$, then the realation between $$p$$ and $$q$$ is
24
Given both $$\theta $$ and $$\phi $$ are acute angles and $$\sin \,\theta = {1 \over 2},\,$$ $$\cos \,\phi = {1 \over 3},$$ then the value of $$\theta + \phi $$ belongs to

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12