Chemistry
STATEMENT - 1 Alkali metals dissolve in liquid ammonia to give blue solutions. because
STATEMENT - 2 Alkali metals is liquid ammonia give solvated species of the type [M(NH3)n]+ (M = alkali metals)
Mathematics
STATEMENT-1:
$$P\left( {{H_1}|E} \right) > P\left( {E|{H_1}} \right).P\left( {{H_1}} \right)$$ for $$i=1,2,....,n$$ because
STATEMENT-2: $$\sum\limits_{i = 1}^n {P\left( {{H_i}} \right)} = 1.$$
Column $$I$$
(A) If $$a=1$$ and $$b=0,$$ then $$(x, y)$$
(B) If $$a=1$$ and $$b=1,$$ then $$(x, y)$$
(C) If $$a=1$$ and $$b=2,$$ then $$(x, y)$$
(D) If $$a=2$$ and $$b=2,$$ then $$(x, y)$$
Column $$II$$
(p) lies on the circle $${x^2} + {y^2} = 1$$
(q) lies on $$\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
(r) lies on $$y=x$$
(s) lies on $$\left( {4{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.
The line $$y=x$$ meets $$y = k{e^x}$$ for $$k \le 0$$ at
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.
The positive value of $$k$$ for which $$k{e^x} - x = 0$$ has only one root is
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.
For $$k>0$$, the set of all values of $$k$$ for which $$k{e^x} - x = 0$$ has two distinct roots is
STATEMENT-1: The function $$F(x)$$ satisfies $$F\left( {x + \pi } \right) = F\left( x \right)$$
for all real $$x$$. because
STATEMENT-2: $${\sin ^2}\left( {x + \pi } \right) = {\sin ^2}x$$ for all real $$x$$.
Column $$I$$
(A) $$\int\limits_{ - 1}^1 {{{dx} \over {1 + {x^2}}}} $$
(B) $$\int\limits_0^1 {{{dx} \over {\sqrt {1 - {x^2}} }}} $$
(C) $$\int\limits_2^3 {{{dx} \over {1 - {x^2}}}} $$
(D) $$\int\limits_1^2 {{{dx} \over {x\sqrt {{x^2} - 1} }}} $$
Column $$II$$
(p) $${1 \over 2}\log \left( {{2 \over 3}} \right)$$
(q) $$2\log \left( {{2 \over 3}} \right)$$
(r) $${{\pi \over 3}}$$
(s) $${{\pi \over 2}}$$
STATEMENT - 1: for eachreal $$t$$, there exists a point $$c$$ in $$\left[ {t,t + \pi } \right]$$ such that $$f'\left( c \right) = 0$$ because
STATEMENT - 2: $$f\left( t \right) = f\left( {t + 2\pi } \right)$$ for each real $$t$$.
Match the conditions/expressions in Column $$I$$ with statements in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS.$$
$$\,\,\,$$ Column $$I$$
(A)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$
(B)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(C)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(D)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$
$$\,\,\,$$ Column $$II$$
(p)$$\,\,\,$$ the equations represents planes meeting only at asingle point
(q)$$\,\,\,$$ the equations represents the line $$x=y=z.$$
(r)$$\,\,\,$$ the equations represent identical planes.
(s) $$\,\,\,$$ the equations represents the whole of the three dimensional space.
STATEMENT-1: The parametric equations of the line of intersection of the given planes are $$x=3+14t,y=1+2t,z=15t.$$ because
STATEMENT-2: The vector $${14\widehat i + 2\widehat j + 15\widehat k}$$ is parallel to the line of intersection of given planes.
STATEMENT-1: $$\overrightarrow {PQ} \times \left( {\overrightarrow {RS} + \overrightarrow {ST} } \right) \ne \overrightarrow 0 .$$ because
STATEMENT-2: $$\overrightarrow {PQ} \times \overrightarrow {RS} = \overrightarrow 0 $$ and $$\overrightarrow {PQ} \times \overrightarrow {ST} \ne \overrightarrow 0 \,\,.$$
Which one of the following statements is correct ?
in the interval $$\left[ {0,2\pi } \right]$$
The sum $${V_1}$$+$${V_2}$$ +...+$${V_n}$$ is
$${T_r}$$ is always
Which one of the following statements is correct ?
Which one of the following statements is correct ?
Which one of the following is a correct statement?
Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$. because
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.
Column $$I$$
(A) Two intersecting circles
(B) Two mutually external circles
(C) Two circles, one strictly inside the other
(D) Two branches vof a hyperbola
Column $$II$$
(p) have a common tangent
(q) have a common normal
(r) do not have a common tangent
(s) do not have a common normal
The ratio of the areas of the triangles $$PQS$$ and $$PQR$$ is
The radius of the incircle of the triangle $$PQR$$ is
The radius of the circumcircle of the triangle $$PRS$$ is
STATEMENT-2: A parabola is symmetric about its axis.