IIT-JEE 2007
Paper was held on Wed, Apr 11, 2007 9:00 AM
View Questions

Chemistry

Mathematics

1
Let $${H_1},{H_2},....,{H_n}$$ be mutually exclusive and exhaustive events with $$P\left( {{H_1}} \right) > 0,i = 1,2,.....,n.$$ Let $$E$$ be any other event with $$0 < P\left( E \right) < 1.$$
STATEMENT-1:
$$P\left( {{H_1}|E} \right) > P\left( {E|{H_1}} \right).P\left( {{H_1}} \right)$$ for $$i=1,2,....,n$$ because

STATEMENT-2: $$\sum\limits_{i = 1}^n {P\left( {{H_i}} \right)} = 1.$$

2
Let $$ABCD$$ be a quadrilateral with area $$18$$, with side $$AB$$ parallel to the side $$CD$$ and $$2AB=CD$$. Let $$AD$$ be perpendicular to $$AB$$ and $$CD$$. If a circle is drawn inside the quadrilateral $$ABCD$$ touching all the sides, then its radius is
3
Let $$(x, y)$$ be such that $${\sin ^{ - 1}}\left( {ax} \right) + {\cos ^{ - 1}}\left( y \right) + {\cos ^{ - 1}}\left( {bxy} \right) = {\pi \over 2}$$.

Column $$I$$
(A) If $$a=1$$ and $$b=0,$$ then $$(x, y)$$
(B) If $$a=1$$ and $$b=1,$$ then $$(x, y)$$
(C) If $$a=1$$ and $$b=2,$$ then $$(x, y)$$
(D) If $$a=2$$ and $$b=2,$$ then $$(x, y)$$

Column $$II$$
(p) lies on the circle $${x^2} + {y^2} = 1$$
(q) lies on $$\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
(r) lies on $$y=x$$
(s) lies on $$\left( {4{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$

4
The tangent to the curve $$y = {e^x}$$ drawn at the point $$\left( {c,{e^c}} \right)$$ intersects the line joining the points $$\left( {c - 1,{e^{c - 1}}} \right)$$ and $$\left( {c + 1,{e^{c + 1}}} \right)$$
5
If a continuous function $$f$$ defined on the real line $$R$$, assumes positive and negative values in $$R$$ then the equation $$f(x)=0$$ has a root in $$R$$. For example, if it is known that a continuous function $$f$$ on $$R$$ is positive at some point and its minimum value is negative then the equation $$f(x)=0$$ has a root in $$R$$.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.

The line $$y=x$$ meets $$y = k{e^x}$$ for $$k \le 0$$ at

6
If a continuous function $$f$$ defined on the real line $$R$$, assumes positive and negative values in $$R$$ then the equation $$f(x)=0$$ has a root in $$R$$. For example, if it is known that a continuous function $$f$$ on $$R$$ is positive at some point and its minimum value is negative then the equation $$f(x)=0$$ has a root in $$R$$.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.

The positive value of $$k$$ for which $$k{e^x} - x = 0$$ has only one root is

7
If a continuous function $$f$$ defined on the real line $$R$$, assumes positive and negative values in $$R$$ then the equation $$f(x)=0$$ has a root in $$R$$. For example, if it is known that a continuous function $$f$$ on $$R$$ is positive at some point and its minimum value is negative then the equation $$f(x)=0$$ has a root in $$R$$.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.

For $$k>0$$, the set of all values of $$k$$ for which $$k{e^x} - x = 0$$ has two distinct roots is

8
Let $$F(x)$$ be an indefinite integral of $$si{n^2}x.$$

STATEMENT-1: The function $$F(x)$$ satisfies $$F\left( {x + \pi } \right) = F\left( x \right)$$
for all real $$x$$. because

STATEMENT-2: $${\sin ^2}\left( {x + \pi } \right) = {\sin ^2}x$$ for all real $$x$$.

9
Match the integrals in Column $$I$$ with the values in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS$$.

Column $$I$$
(A) $$\int\limits_{ - 1}^1 {{{dx} \over {1 + {x^2}}}} $$
(B) $$\int\limits_0^1 {{{dx} \over {\sqrt {1 - {x^2}} }}} $$
(C) $$\int\limits_2^3 {{{dx} \over {1 - {x^2}}}} $$
(D) $$\int\limits_1^2 {{{dx} \over {x\sqrt {{x^2} - 1} }}} $$

Column $$II$$
(p) $${1 \over 2}\log \left( {{2 \over 3}} \right)$$
(q) $$2\log \left( {{2 \over 3}} \right)$$
(r) $${{\pi \over 3}}$$
(s) $${{\pi \over 2}}$$

10
One Indian and four American men and their wives are to be seated randomly around a circular table. Then the conditional probability that the Indian man is seated adjacent to his wife given that each American man is seated adjacent to his wife is
11
Let $$\,\,\,$$$$f\left( x \right) = 2 + \cos x$$ for all real $$X$$.

STATEMENT - 1: for eachreal $$t$$, there exists a point $$c$$ in $$\left[ {t,t + \pi } \right]$$ such that $$f'\left( c \right) = 0$$ because
STATEMENT - 2: $$f\left( t \right) = f\left( {t + 2\pi } \right)$$ for each real $$t$$.

12
The minimum of distinct real values of $$\lambda ,$$ for which the vectors $$ - {\lambda ^2}\widehat i + \widehat j + \widehat k,$$ $$\widehat i - {\lambda ^2}\widehat j + \widehat k$$ and $$\widehat i + \widehat j - {\lambda ^2}\widehat k$$ are coplanar, is
13
Let $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ be unit vectors such that $${\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 .}$$ Which one of the following is correct ?
14
Consider the following linear equations $$ax+by+cz=0;$$ $$\,\,\,$$ $$bx+cy+az=0;$$ $$\,\,\,$$ $$cx+ay+bz=0$$

Match the conditions/expressions in Column $$I$$ with statements in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS.$$

$$\,\,\,$$ Column $$I$$
(A)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$
(B)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(C)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(D)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$

$$\,\,\,$$ Column $$II$$
(p)$$\,\,\,$$ the equations represents planes meeting only at asingle point
(q)$$\,\,\,$$ the equations represents the line $$x=y=z.$$
(r)$$\,\,\,$$ the equations represent identical planes.
(s) $$\,\,\,$$ the equations represents the whole of the three dimensional space.

15
Consider the planes $$3x-6y-2z=15$$ and $$2x+y-2z=5.$$

STATEMENT-1: The parametric equations of the line of intersection of the given planes are $$x=3+14t,y=1+2t,z=15t.$$ because

STATEMENT-2: The vector $${14\widehat i + 2\widehat j + 15\widehat k}$$ is parallel to the line of intersection of given planes.

16
Let the vectors $$\overrightarrow {PQ} ,\,\,\overrightarrow {QR} ,\,\,\overrightarrow {RS} ,\,\,\overrightarrow {ST} ,\,\,\overrightarrow {TU} ,$$ and $$\overrightarrow {UP} ,$$ represent the sides of a regular hexagon.

STATEMENT-1: $$\overrightarrow {PQ} \times \left( {\overrightarrow {RS} + \overrightarrow {ST} } \right) \ne \overrightarrow 0 .$$ because
STATEMENT-2: $$\overrightarrow {PQ} \times \overrightarrow {RS} = \overrightarrow 0 $$ and $$\overrightarrow {PQ} \times \overrightarrow {ST} \ne \overrightarrow 0 \,\,.$$

17
Let $${A_1}$$, $${G_1}$$, $${H_1}$$ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $$n \ge 2,\,Let\,{A_{n - 1}}\,\,and\,\,{H_{n - 1}}$$ have arithmetic, geometric and harminic means as $${A_n},{G_n}\,,{H_n}$$ repectively.

Which one of the following statements is correct ?

18
If $$\left| z \right|\, =1\,and\,z\, \ne \, \pm \,1,$$ then all the values of $${z \over {1 - {z^2}}}$$ lie on
19
The number of solutions of the pair of equations $$$\,2{\sin ^2}\theta - \cos 2\theta = 0$$$ $$$2co{s^2}\theta - 3\sin \theta = 0$$$

in the interval $$\left[ {0,2\pi } \right]$$

20
Let $$\alpha ,\,\beta $$ be the roots of the equation $${x^2} - px + r = 0$$ and $${\alpha \over 2},\,2\beta $$ be the roots of the equation $${x^2} - qx + r = 0$$. Then the value of $$r$$
21
The letters of the word COCHIN are permuted and all the permutations are arranged in an alphabetical order as in an English dictionary. The number of words that appear before the word COCHIN is
22
Let $$\,{V_r}$$ denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $${T_r} = \,{V_{r + 1}} - \,{V_r} - 2\,\,\,and\,\,\,{Q_r} = \,{T_{r + 1}} - \,{T_r}\,for\,r = 1,2,...$$

The sum $${V_1}$$+$${V_2}$$ +...+$${V_n}$$ is

23
Let $$\,{V_r}$$ denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $${T_r} = \,{V_{r + 1}} - \,{V_r} - 2\,\,\,and\,\,\,{Q_r} = \,{T_{r + 1}} - \,{T_r}\,for\,r = 1,2,...$$

$${T_r}$$ is always

24
Let $${A_1}$$, $${G_1}$$, $${H_1}$$ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $$n \ge 2,\,Let\,{A_{n - 1}}\,\,and\,\,{H_{n - 1}}$$ have arithmetic, geometric and harminic means as $${A_n},{G_n}\,,{H_n}$$ repectively.

Which one of the following statements is correct ?

25
Let $${A_1}$$, $${G_1}$$, $${H_1}$$ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $$n \ge 2,\,Let\,{A_{n - 1}}\,\,and\,\,{H_{n - 1}}$$ have arithmetic, geometric and harminic means as $${A_n},{G_n}\,,{H_n}$$ repectively.

Which one of the following statements is correct ?

26
Let $$\,{V_r}$$ denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $${T_r} = \,{V_{r + 1}} - \,{V_r} - 2\,\,\,and\,\,\,{Q_r} = \,{T_{r + 1}} - \,{T_r}\,for\,r = 1,2,...$$

Which one of the following is a correct statement?

27
A man walks a distance of 3 units from the origin towards the north-east ($$N\,{45^ \circ E }$$) direction. From there, he walks a distance of 4 units towards the north-west $$\left( {N\,{{45}^ \circ }\,W} \right)$$ direction to reach a point P. Then the position of P in the Argand plane is
28
Let $$O\left( {0,0} \right),P\left( {3,4} \right),Q\left( {6,0} \right)$$ be the vertices of the triangles $$OPQ$$. The point $$R$$ inside the triangle $$OPQ$$ is such that the triangles $$OPR$$, $$PQR$$, $$OQR$$ are of equal area. The coordinates of $$R$$ are
29
The lines $${L_1}:y - x = 0$$ and $${L_2}:2x + y = 0$$ intersect the line $${L_3}:y + 2 = 0$$ at $$P$$ and $$Q$$ respectively. The bisector of the acute angle between $${L_1}$$ and $${L_2}$$ intersects $${L_3}$$ at $$R$$.

Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$. because
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

30
A hyperbola, having the transverse axis of length $$2\sin \theta ,$$ is confocal with the ellipse $$3{x^2} + 4{y^2} = 12.$$ Then its equation is
31
Match the statements in Column $$I$$ with the properties in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS$$.

Column $$I$$
(A) Two intersecting circles
(B) Two mutually external circles
(C) Two circles, one strictly inside the other
(D) Two branches vof a hyperbola

Column $$II$$
(p) have a common tangent
(q) have a common normal
(r) do not have a common tangent
(s) do not have a common normal

32
Consider the circle $${x^2} + {y^2} = 9$$ and the parabola $${y^2} = 8x$$. They intersect at $$P$$ and $$Q$$ in the first and the fourth quadrants, respectively. Tangent to the circle at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$R$$ and tangents to the parabola at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$S$$.

The ratio of the areas of the triangles $$PQS$$ and $$PQR$$ is

33
Consider the circle $${x^2} + {y^2} = 9$$ and the parabola $${y^2} = 8x$$. They intersect at $$P$$ and $$Q$$ in the first and the fourth quadrants, respectively. Tangent to the circle at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$R$$ and tangents to the parabola at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$S$$.

The radius of the incircle of the triangle $$PQR$$ is

34
Consider the circle $${x^2} + {y^2} = 9$$ and the parabola $${y^2} = 8x$$. They intersect at $$P$$ and $$Q$$ in the first and the fourth quadrants, respectively. Tangent to the circle at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$R$$ and tangents to the parabola at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$S$$.

The radius of the circumcircle of the triangle $$PRS$$ is

35
STATEMENT-1: The curve $$y = {{ - {x^2}} \over 2} + x + 1$$ is symmetric with respect to the line $$x=1$$. because

STATEMENT-2: A parabola is symmetric about its axis.

36
$${{{d^2}x} \over {d{y^2}}}$$ equals

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12