Let $\mathbb{R}^2$ denote $\mathbb{R} \times \mathbb{R}$. Let
$$ S=\left\{(a, b, c): a, b, c \in \mathbb{R} \text { and } a x^2+2 b x y+c y^2>0 \text { for all }(x, y) \in \mathbb{R}^2-\{(0,0)\}\right\} . $$
Then which of the following statements is (are) TRUE?
Let $\mathbb{R}^3$ denote the three-dimensional space. Take two points $P=(1,2,3)$ and $Q=(4,2,7)$. Let $\operatorname{dist}(X, Y)$ denote the distance between two points $X$ and $Y$ in $\mathbb{R}^3$. Let
$$ \begin{gathered} S=\left\{X \in \mathbb{R}^3:(\operatorname{dist}(X, P))^2-(\operatorname{dist}(X, Q))^2=50\right\} \text { and } \\ T=\left\{Y \in \mathbb{R}^3:(\operatorname{dist}(Y, Q))^2-(\operatorname{dist}(Y, P))^2=50\right\} . \end{gathered} $$
Then which of the following statements is (are) TRUE?
Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{1 / 6} \sqrt{6}}$. If $x, y \in \mathbb{R}$ are such that
$$ \begin{aligned} & 3 x+2 y=\log _a(18)^{\frac{5}{4}} \quad \text { and } \\ & 2 x-y=\log _b(\sqrt{1080}), \end{aligned} $$
then $4 x+5 y$ is equal to __________.
Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to ____________.