1
JEE Advanced 2024 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language

Let $\mathbb{R}^3$ denote the three-dimensional space. Take two points $P=(1,2,3)$ and $Q=(4,2,7)$. Let $\operatorname{dist}(X, Y)$ denote the distance between two points $X$ and $Y$ in $\mathbb{R}^3$. Let

$$ \begin{gathered} S=\left\{X \in \mathbb{R}^3:(\operatorname{dist}(X, P))^2-(\operatorname{dist}(X, Q))^2=50\right\} \text { and } \\ T=\left\{Y \in \mathbb{R}^3:(\operatorname{dist}(Y, Q))^2-(\operatorname{dist}(Y, P))^2=50\right\} . \end{gathered} $$

Then which of the following statements is (are) TRUE?

A
There is a triangle whose area is 1 and all of whose vertices are from $S$.
B
There are two distinct points $L$ and $M$ in $T$ such that each point on the line segment $L M$ is also in $T$.
C
There are infinitely many rectangles of perimeter 48 , two of whose vertices are from $S$ and the other two vertices are from $T$.
D
There is a square of perimeter 48 , two of whose vertices are from $S$ and the other two vertices are from $T$.
2
JEE Advanced 2024 Paper 1 Online
Numerical
+4
-0
Change Language

Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{1 / 6} \sqrt{6}}$. If $x, y \in \mathbb{R}$ are such that

$$ \begin{aligned} & 3 x+2 y=\log _a(18)^{\frac{5}{4}} \quad \text { and } \\ & 2 x-y=\log _b(\sqrt{1080}), \end{aligned} $$

then $4 x+5 y$ is equal to __________.

Your input ____
3
JEE Advanced 2024 Paper 1 Online
Numerical
+4
-0
Change Language

Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to ____________.

Your input ____
4
JEE Advanced 2024 Paper 1 Online
Numerical
+4
-0
Change Language

Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is __________.

Your input ____
JEE Advanced Papers
EXAM MAP