IIT-JEE 2002
Paper was held on
Thu, Apr 11, 2002 9:00 AM
Mathematics
1
Let $$\omega $$ $$ = - {1 \over 2} + i{{\sqrt 3 } \over 2},$$ then the value of the det.
$$\,\left| {\matrix{ 1 & 1 & 1 \cr 1 & { - 1 - {\omega ^2}} & {{\omega ^2}} \cr 1 & {{\omega ^2}} & {{\omega ^4}} \cr } } \right|$$ is
$$\,\left| {\matrix{ 1 & 1 & 1 \cr 1 & { - 1 - {\omega ^2}} & {{\omega ^2}} \cr 1 & {{\omega ^2}} & {{\omega ^4}} \cr } } \right|$$ is
2
Let a complex number $$\alpha ,\,\alpha \ne 1$$, be a root of the equation $${z^{p + q}} - {z^p} - {z^q} + 1 = 0$$, where p, q are distinct primes. Show that either $$1 + \alpha + {\alpha ^2} + .... + {\alpha ^{p - 1}} = 0\,or\,1 + \alpha + {\alpha ^2} + .... + {\alpha ^{q - 1}} = 0$$, but not both together.
3
Use mathematical induction to show that
$${\left( {25} \right)^{n + 1}} - 24n + 5735$$ is divisible by $${\left( {24} \right)^2}$$ for all $$ = n = 1,2,...$$
$${\left( {25} \right)^{n + 1}} - 24n + 5735$$ is divisible by $${\left( {24} \right)^2}$$ for all $$ = n = 1,2,...$$
4
Let a, b be positive real numbers. If a, $${{A_1},{A_2}}$$, b are in arithmetic progression, a, $${{G_1},{G_2}}$$, b are in geometric progression and a, $${{H_1},{H_2}}$$, b are in harmonic progression, show that $$\,{{{G_1},{G_2}} \over {{H_1},{H_2}}} = {{{A_1} + {A_2}} \over {{H_1} + {H_2}}} = {{(2a + b)\,(a + 2b)} \over {9ab}}$$.
5
A straight line $$L$$ through the origin meets the lines $$x + y = 1$$ and $$x + y = 3$$ at $$P $$ and $$Q$$ respectively. Through $$P$$ and $$Q$$ two straight lines $${L_1}$$ and $${L_2}$$ are drawn, parallel to $$2x - y = 5$$ and $$3x + y = 5$$ respectively. Lines $${L_1}$$ and $${L_2}$$ intersect at $$R$$. Show that the locus of $$R$$, as $$L$$ varies is a straight line.
6
A straight line $$L$$ with negative slope passes through the point $$(8, 2)$$ and cuts the positive coordinate axes at points $$P$$ and $$Q$$. Find the absolute minimum value of $$OP + OQ,$$ as $$L$$ varies, where $$O$$ is the origin.
7
A triangle with vertices $$(4, 0), (-1, -1), (3, 5)$$is
8
Locus of mid point of the portion between the axes of $$x$$ $$\cos \alpha + y\sin \alpha = p$$ where $$p$$ is constant is
9
If the pair of lines $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$ intersect on the $$y$$ axis then
10
The pair of lines represented by
$$3a{x^2} + 5xy + \left( {{a^2} - 2} \right){y^2} = 0$$ are perpendicular to each other for
$$3a{x^2} + 5xy + \left( {{a^2} - 2} \right){y^2} = 0$$ are perpendicular to each other for
11
Prove that, in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
12
Prove that $$\cos \,ta{n^{ - 1}}\sin \,{\cot ^{ - 1}}x = \sqrt {{{{x^2} + 1} \over {{x^2} + 2}}} $$.
13
For any natural number $$m$$, evaluate
$$\int {\left( {{x^{3m}} + {x^{2m}} + {x^m}} \right){{\left( {2{x^{2m}} + 3{x^m} + 6} \right)}^{l/m}}dx,x > 0.} $$
$$\int {\left( {{x^{3m}} + {x^{2m}} + {x^m}} \right){{\left( {2{x^{2m}} + 3{x^m} + 6} \right)}^{l/m}}dx,x > 0.} $$
14
Find the area of the region bounded by the curves $$y = {x^2},y = \left| {2 - {x^2}} \right|$$ and $$y=2,$$ which lies to the right of the line $$x=1.$$
15
A box contains $$N$$ coins, $$m$$ of which are fair and the rest are biased. The probability of getting a head when a fair coin is tossed is $$1/2$$, while it is $$2/3$$ when a biased coin is tossed. A coin is drawn from the box at random and is tossed twice. The first time it shows head and the second time it shows tail. what is the probability that the coin drawn is fair?
16
Let $$V$$ be the volume of the parallelopiped formed by the vectors $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k,$$ $$\,\,\,\,\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k,$$ $$\,\,\,\,\,\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k.$$ where $$r=1, 2, 3,$$ are non-negative real numbers and $$\sum\limits_{r = 1}^3 {\left( {{a_r} + {b_r} + {c_r}} \right) = 3L,} $$ show that $$V \le {L^3}\,\,.$$