IIT-JEE 2002 Screening
Paper was held on Thu, Apr 11, 2002 9:00 AM
View Questions

Chemistry

Mathematics

1
The point(s) in the curve $${y^3} + 3{x^2} = 12y$$ where the tangent is vertical, is (are)
2
Let $$\overrightarrow V = 2\overrightarrow i + \overrightarrow j - \overrightarrow k $$ and $$\overrightarrow W = \overrightarrow i + 3\overrightarrow k .$$ If $$\overrightarrow U $$ is a unit vector, then the maximum value of the scalar triple product $$\left| {\overrightarrow U \overrightarrow V \overrightarrow W } \right|$$ is
3
If $${\overrightarrow a }$$ and $${\overrightarrow b }$$ are two unit vectors such that $${\overrightarrow a + 2\overrightarrow b }$$ and $${5\overrightarrow a - 4\overrightarrow b }$$ are perpendicular to each other then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
4
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is

5
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is

6
Let $$f\left( x \right) = \int\limits_1^x {\sqrt {2 - {t^2}} \,dt.} $$ Then the real roots of the equation
$${x^2} - f'\left( x \right) = 0$$ are
7
The integral $$\int\limits_{ - 1/2}^{1/2} {\left( {\left[ x \right] + \ell n\left( {{{1 + x} \over {1 - x}}} \right)} \right)dx} $$ equal to
8
The area bounded by the curves $$y = \left| x \right| - 1$$ and $$y = - \left| x \right| + 1$$ is
9
For all complex numbers $${z_1},\,{z_2}$$ satisfying $$\left| {{z_1}} \right| = 12$$ and $$\left| {{z_2} - 3 - 4i} \right| = 5,$$
the minimum value of $$\left| {{z_1} - {z_2}} \right|$$ is
10
The length of a longest interval in which the function $$3\,\sin x - 4{\sin ^3}x$$ is increasing, is
11
Which of the following pieces of data does NOT uniquely determine an acute-angled triangle $$ABC$$ ($$R$$ being the radius of the circumcircle)?
12
The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$ is another parabola with directrix
13
The equation of the common tangent to the curves $${y^2} = 8x$$ and $$xy = - 1$$ is
14
If $$a > 2b > 0$$ then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$ is a common tangent to $${x^2} + {y^2} = {b^2}$$ and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$ is
15
If the tangent at the point P on the circle $${x^2} + {y^2} + 6x + 6y = 2$$ meets a straight line 5x - 2y + 6 = 0 at a point Q on the y-axis, then the lenght of PQ is
16
A straight line through the origin $$O$$ meets the parallel lines $$4x+2y=9$$ and $$2x+y+6=0$$ at points $$P$$ and $$Q$$ respectively. Then the point $$O$$ divides the segemnt $$PQ$$ in the ratio
17
Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three points.
Then the equation of the bisector of the angle $$PQR$$ is
18
Let $$0 < \alpha < {\pi \over 2}$$ be fixed angle. If $$P = \left( {\cos \theta ,\,\sin \theta } \right)$$ and $$Q = \left( {\cos \left( {\alpha - \theta } \right),\,\sin \left( {\alpha - \theta } \right)} \right),$$ then $$Q$$ is obtained from $$P$$ by
19
Suppose $$a, b, c$$ are in A.P. and $${a^2},{b^2},{c^2}$$ are in G.P. If $$a < b < c$$ and $$a + b + c = {3 \over 2},$$ then the value of $$a$$ is
20
The number of arrangements of the letters of the word BANANA in which the two N's do not appear adjacently is
21
The sum $$\sum\limits_{i = 0}^m {\left( {\matrix{ {10} \cr i \cr } } \right)\left( {\matrix{ {20} \cr {m - i} \cr } } \right),\,\left( {where\left( {\matrix{ p \cr q \cr } } \right) = 0\,\,if\,\,p < q} \right)} $$ is maximum when $$m$$ is
22
The set of all real numbers x for which $${x^2} - \left| {x + 2} \right| + x > 0$$, is
23
If $${a_1},{a_2}.......,{a_n}$$ are positive real numbers whose product is a fixed number c, then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}$$ is
24
The number of integral values of $$k$$ for which the equation $$7\cos x + 5\sin x = 2k + 1$$ has a solution is

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12