IIT-JEE 2001 Screening
Paper was held on Wed, Apr 11, 2001 9:00 AM
View Questions

Chemistry

Mathematics

1
If $${\sin ^{ - 1}}\left( {x - {{{x^2}} \over 2} + {{{x^3}} \over 4} - ....} \right)$$ $$$ + {\cos ^{ - 1}}\left( {{x^2} - {{{x^4}} \over 2} + {{{x^6}} \over 4} - ....} \right) = {\pi \over 2}$$$
for $$0 < \left| x \right| < \sqrt 2 ,$$ then $$x$$ equals
2
If $$f\left( x \right) = x{e^{x\left( {1 - x} \right)}},$$ then $$f(x)$$ is
3
The triangle formed by the tangent to the curve $$f\left( x \right) = {x^2} + bx - b$$ at the point $$(1, 1)$$ and the coordinate axex, lies in the first quadrant. If its area is $$2$$, then the value of $$b$$ is
4
Let $$f\left( x \right) = \left( {1 + {b^2}} \right){x^2} + 2bx + 1$$ and let $$m(b)$$ be the minimum value of $$f(x)$$. As $$b$$ varies, the range of $$m(b)$$ is
5
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}x} \over {1 + {a^x}}}dx,\,a > 0,} $$ is
6
Let $$\overrightarrow a = \overrightarrow i - \overrightarrow k ,\overrightarrow b = x\overrightarrow i + \overrightarrow j + \left( {1 - x} \right)\overrightarrow k $$ and
$$\overrightarrow c = y\overrightarrow i - x\overrightarrow j + \left( {1 + x - y} \right)\overrightarrow k .$$ Then $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$ depends on
7
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors, then $${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2}$$ does NOT exceed
8
A man from the top of a $$100$$ metres high tower sees a car moving towards the tower at an angle of depression of $${30^ \circ }$$. After some time,the angle of depression becomes $${60^ \circ }$$. The distance (in metres) travelled by the car during this time is
9
If the sum of the first $$2n$$ terms of the A.P.$$2,5,8,......,$$ is equal to the sum of the first $$n$$ terms of the A.P.$$57,59,61,.....,$$ then $$n$$ equals
10
The maximum value of $$\left( {\cos {\alpha _1}} \right).\left( {\cos {\alpha _2}} \right).....\left( {\cos {\alpha _n}} \right),$$ under the restrictions
$$0 \le {\alpha _1},{\alpha _2},....,{\alpha _n} \le {\pi \over 2}$$ vand $$\left( {\cot {\alpha _1}} \right).\left( {\cot {\alpha _2}} \right)....\left( {\cot {\alpha _n}} \right) = 1$$ is
11
If $$\alpha + \beta = \pi /2$$ and $$\beta + \gamma = \alpha ,$$ then $$\tan \,\alpha \,$$ equals
12
The complex numbers $${z_1},\,{z_2}$$ and $${z_3}$$ satisfying $${{{z_1} - {z_3}} \over {{z_2} - {z_3}}} = {{1 - i\sqrt 3 } \over 2}\,$$ are the vertices of a triangle which is
13
Let $${z_1}$$ and $${z_2}$$ be $${n^{th}}$$ roots of unity which subtend a right angle at the origin. Then $$n$$ must be of the form
14
In the binomial expansion of $${\left( {a - b} \right)^n},\,n \ge 5,$$ the sum of the $${5^{th}}$$ and $${6^{th}}$$ terms is zero. Then $$a/b$$ equals
15
Let $${T_n}$$ denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If $${T_{n + 1}} - {T_n} = 21$$, then n equals
16
Let $$\alpha $$, $$\beta $$ be the roots of $${x^2} - x + p = 0$$ and $$\gamma ,\delta $$ be the roots of $${x^2} - 4x + q = 0.$$ If $$\alpha ,\beta ,\gamma ,\delta $$ are in G.P., then the integral values of $$p$$ and $$q$$ respectively, are
17
Let the positive numbers $$a,b,c,d$$ be in A.P. Then $$abc,$$ $$abd,$$ $$acd,$$ $$bcd,$$ are
18
The number of distinct real roots of $$\left| {\matrix{ {\sin x} & {\cos x} & {\cos x} \cr {\cos x} & {\sin x} & {\cos x} \cr {\cos x} & {\cos x} & {\sin x} \cr } } \right|\,$$
$$\, = 0$$ in the interval $$ - {\pi \over 4} \le x \le {\pi \over 4}$$ is
19
The number of integer values of $$m$$, for which the $$x$$-coordinate of the point of intersection of the lines $$3x + 4y = 9$$ and $$y = mx + 1$$ is also an integer, is
20
Area of the parallelogram formed by the lines $$y = mx$$, $$y = mx + 1$$, $$y = nx$$ and $$y = nx + 1$$ equals
21
Let A B be a chord of the circle $${x^2} + {y^2} = {r^2}$$ subtending a right angle at the centre. Then the locus of the centriod of the triangle PAB as P moves on the circle is
22
Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals
23
The equation of the directrix of the parabola $${y^2} + 4y + 4x + 2 = 0$$
24
The equation of the common tangent touching the circle $${\left( {x - 3} \right)^2} + {y^2} = 9$$ and the parabola $${y^2} = 4x$$ above the $$x$$-axis is
25
Let $$f:\left( {0,\infty } \right) \to R$$ and $$F\left( x \right) = \int\limits_0^x {f\left( t \right)dt.} $$ If $$F\left( {{x^2}} \right) = {x^2}\left( {1 + x} \right)$$, then $$f(4)$$ equals

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12