IIT-JEE 1997
Paper was held on Fri, Apr 11, 1997 9:00 AM
View Questions

Chemistry

1
The critical temperature of water is higher than that of O2 because the H2O molecule has
2
For a d-electron the orbital angular momentum is
3
Which one of the following compounds has sp2 hybridization?
4
Which contains both polar and non-polar bonds?
5
A compound of vanadium has a magnetic moment of 1.73 BM. Work out the electronic configuration of the vanadium ion in the compound.
6
Give reasons of the following:
The crystalline salts of alkaline earth metals contain more water of crystallisation than the corresponding alkali metal salts.
7
To a 25ml H2O2 solution, excess of acidified solution of potassium iodide was added. The iodine liberated required 20 ml of 0.3 N sodium thiosulphate solution. Calculate the volume strength of H2O2 solution.
8
Element A burns in nitrogen to give an ionic compound B. Compound B reacts with water to give C and D. A solution of C becomes 'milky' on bubbling carbon dioxide. Identify A, B, C and D.
9
Give reactions for the oxidation of hydrogen peroxide with potassium permanganate in acidic medium.
10
Arrange the following sulphates of Alkaline earth metals in order of decreasing thermal stability : BeSO4, MgSO4, CaSO4, SrSO4
11
How many grams of silver could be plated out on a serving tray by electrolysis of a solution containing silver in +1 oxidation state for a period of 8.0 hours at a current of 8.46 amperes? What is the area of the tray if the thickness of the silver plating is 0.00254 cm? Density of silver is 10.5 g/cm3
12
Calculate the equilibrium constant for the reaction
Fe2+ + Ce4+ $$\leftrightharpoons$$ Fe3+ + Ce3+
(given $$E_{C{e^{4 + }}/C{e^{3 + }}}^o$$ = 1.44 V; $$E_{F{e^{3 + }}/F{e^{2 + }}}^o$$ = 0.68 V)

Mathematics

1
Determine the value of $$\int_\pi ^\pi {{{2x\left( {1 + \sin x} \right)} \over {1 + {{\cos }^2}x}}} \,dx.$$
2
Let $$u(x)$$ and $$v(x)$$ satisfy the differential equation $${{du} \over {dx}} + p\left( x \right)u = f\left( x \right)$$ and $${{dv} \over {dx}} + p\left( x \right)v = g\left( x \right),$$ where $$p(x) f(x)$$ and $$g(x)$$ are continuous functions. If $$u\left( {{x_1}} \right) > v\left( {{x_1}} \right)$$ for some $${{x_1}}$$ and $$f(x)>g(x)$$ for all $$x > {x_1},$$ prove that any point $$(x,y)$$ where $$x > {x_1},$$ does not satisfy the equations $$y=u(x)$$ and $$y=v(x)$$
3
If $$p$$ and $$q$$ are chosen randomly from the set $$\left\{ {1,2,3,4,5,6,7,8,9,10} \right\},$$ with replacement, determine the probability that the roots of the equation $${x^2} + px + q = 0$$ are real.
4
Let $$OA=a,$$ $$OB=10a+2b$$ and $$OC=b$$ where $$O,A$$ and $$C$$ are non-collinear points. Let $$p$$ denote the area of the quadrilateral $$OABC,$$ and let $$q$$ denote the area of the parallelogram with $$OA$$ and $$OC$$ as adjacent sides. If $$p=kq,$$ then $$k=$$.........
5
If $$A,B$$ and $$C$$ are vectors such that $$\left| B \right| = \left| C \right|.$$ Prove that
$$\left[ {\left( {A + B} \right) \times \left( {A + C} \right)} \right] \times \left( {B \times C} \right)\left( {B + C} \right) = 0\,\,.$$
6
Let $$f(x)= Maximum $$ $$\,\left\{ {{x^2},{{\left( {1 - x} \right)}^2},2x\left( {1 - x} \right)} \right\},$$ where $$0 \le x \le 1.$$
Determine the area of the region bounded by the curves
$$y = f\left( x \right),$$ $$x$$-axes, $$x=0$$ and $$x=1.$$
7
For each natural number k, let $${C_k}$$ denote the circle with radius k centimetres and centre at the origin. On the circle $${C_k}$$, a-particle moves k centimetres in the counter-clockwise direction. After completing its motion on $${C_k}$$, the particle moves to $${C_{k + 1}}$$ in the radial direction. The motion of the patticle continues in the manner. The particle starts at (1, 0). If the particle crosses the positive direction of the x-axis for the first time on the circle $${C_n}$$ then n = ..............
8
Let $${z_1}$$ and $${z_2}$$ be roots of the equation $${z^2} + pz + q = 0\,$$ , where the coefficients p and q may be complex numbers. Let A and B represent $${z_1}$$ and $${z_2}$$ in the complex plane. If $$\angle AOB = \alpha \ne 0\,$$ and OA = OB, where O is the origin, prove that $${p^2} = 4q\,{\cos ^2}\left( {{\alpha \over 2}} \right)$$.
9
Prove that the values of the function $${{\sin x\cos 3x} \over {\sin 3x\cos x}}$$ do not lie between $${1 \over 3}$$ and 3 for any real $$x.$$
10
Prove that $$\sum\limits_{k = 1}^{n - 1} {\left( {n - k} \right)\,\cos \,{{2k\pi } \over n} = - {n \over 2},} $$ where $$n \ge 3$$ is an integer.
11
Let $$S$$ be a square of unit area. Consider any quadrilateral which has one vertex on each side of $$S$$. If $$a,\,b,\,c$$ and $$d$$ denote the lengths of the sides of the quadrilateral, prove that $$2 \le {a^2} + {b^2} + {c^2} + {d^2} \le 4.$$
12
The sum of all the real roots of the equation $${\left| {x - 2} \right|^2} + \left| {x - 2} \right| - 2 = 0$$ is ............................
13
The sum of the rational terms in the expansion of $${\left( {\sqrt 2 + {3^{1/5}}} \right)^{10}}$$ is ...............
14
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that $$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$

where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}

15
Let $$p$$ and $$q$$ be roots of the equation $${x^2} - 2x + A = 0$$ and let $$r$$ and $$s$$ be the roots of the equation $${x^2} - 18x + B = 0.$$ If $$p < q < r < s$$ are in arithmetic progression, then $$A = \,..........$$ and $$B = \,..........$$
16
The real roots of the equation $$\,{\cos ^7}x + {\sin ^4}x = 1$$ in the interval $$\left( { - \pi ,\pi } \right)$$ are ...., ...., and ______.
17
The chords of contact of the pair of tangents drawn from each point on the line 2x + y = 4 to circle $${x^2} + {y^2} = 1$$ pass through the point........................
18
Let C be any circle with centre $$\,\left( {0\, , \sqrt {2} } \right)$$. Prove that at the most two rational points can to there on C. (A rational point is a point both of whose coordinates are rational numbers.)
19
A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that the tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.
20
If $$f\left( x \right) = {x \over {\sin x}}$$ and $$g\left( x \right) = {x \over {\tan x}}$$, where $$0 < x \le 1$$, then in this interval
21
Let $$a+b=4$$, where $$a<2,$$ and let $$g(x)$$ be a differentiable function.

If $${{dg} \over {dx}} > 0$$ for all $$x$$, prove that $$\int_0^a {g\left( x \right)dx + \int_0^b {g\left( x \right)dx} } $$
increases as $$(b-a)$$ increases.

22
The value of $$\int_1^{{e^{37}}} {{{\pi \sin \left( {\pi In\,x} \right)} \over x}\,dx} $$ is ...............
23
Let $${d \over {dx}}\,F\left( x \right) = {{{e^{\sin x}}} \over x},\,x > 0.$$ If $$\int_1^4 {{{2{e^{\sin {x^2}}}} \over x}} \,\,dx = F\left( k \right) - F\left( 1 \right)$$
then one of the possible values of $$k$$ is ............
24
If $$g\left( x \right) = \int_0^x {{{\cos }^4}t\,dt,} $$ then $$g\left( {x + \pi } \right)$$ equals

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12