IIT-JEE 2006
Paper was held on Tue, Apr 11, 2006 9:00 AM
View Questions

Chemistry

Mathematics

1
A plane which is perpendicular to two planes $$2x - 2y + z = 0$$ and $$x - y + 2z = 4,$$ passes through $$(1, -2, 1).$$ The distance of the plane from the point $$(1, 2, 2)$$ is
2
Match the following :

Column $$I$$
(A) $$\int\limits_0^{\pi /2} {{{\left( {\sin x} \right)}^{\cos x}}\left( {\cos x\cot x - \log {{\left( {\sin x} \right)}^{\sin x}}} \right)dx} $$
(B) Area bounded by $$ - 4{y^2} = x$$ and $$x - 1 = - 5{y^2}$$
(C) Cosine of the angle of intersection of curves $$y = {3^{x - 1}}\log x$$ and $$y = {x^x} - 1$$ is
(D) Let $${{dy} \over {dx}} = {6 \over {x + y}}$$ where $$y(0)=0$$ then value of $$y$$ when $$x+y=6$$ is

Column $$II$$
(p) $$1$$
(q) $$0$$
(r) $$6\ln 2$$
(s) $${4 \over 3}$$

3
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

$$\int\limits_0^{\pi /2} {\sin x\,dx = } $$

4
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

If $$\mathop {\lim }\limits_{x \to a} {{\int\limits_a^x {f\left( x \right)dx - \left( {{{x - a} \over 2}} \right)\left( {f\left( x \right) + f\left( a \right)} \right)} } \over {{{\left( {x - a} \right)}^3}}} = 0,\,\,$$ then $$f(x)$$ is
of maximum degree

5
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

If $$f''\left( x \right) < 0\,\forall x \in \left( {a,b} \right)$$ and $$c$$ is a point such that $$a < c < b,$$ and
$$\left( {c,f\left( c \right)} \right)$$ is the point lying on the curve for which $$F(c)$$ is
maximum, then $$f'(c)$$ is equal to

6
A curve $$y=f(x)$$ passes through $$(1,1)$$ and at $$P(x,y),$$ tangent cuts the $$x$$-axis and $$y$$-axis at $$A$$ and $$B$$ respectively such that $$BP:AP=3:1,$$ then
7
There are $$n$$ urns, each of these contain $$n+1$$ balls. The ith urn contains $$i$$ white balls and $$(n+1-i)$$ red balls. Let $${u_i}$$ be the event of selecting ith urn, $$i=1,2,3........,n$$ and $$w$$ the event of getting a white ball.

If $$P\left( {{u_i}} \right) \propto i,\,$$ where $$i=1,2,3,.......,n,$$ then $$\mathop {\lim }\limits_{n \to \infty } P\left( w \right) = $$

8
There are $$n$$ urns, each of these contain $$n+1$$ balls. The ith urn contains $$i$$ white balls and $$(n+1-i)$$ red balls. Let $${u_i}$$ be the event of selecting ith urn, $$i=1,2,3........,n$$ and $$w$$ the event of getting a white ball.

Let $$P\left( {{u_i}} \right) = {1 \over n},$$ if $$n$$ is even and $$E$$ denotes the event of choosing even numbered urn, then the value of $$P\left( {w/E} \right)$$ is

9
There are $$n$$ urns, each of these contain $$n+1$$ balls. The ith urn contains $$i$$ white balls and $$(n+1-i)$$ red balls. Let $${u_i}$$ be the event of selecting ith urn, $$i=1,2,3........,n$$ and $$w$$ the event of getting a white ball.

If $$P\left( {{u_i}} \right) = c,$$ (a constant) then $$P\left( {{u_n}/w} \right) = $$

10
Let $$\overrightarrow a = \widehat i + 2\widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i + \widehat j - \widehat k.$$ A vector in the plane of $$\overrightarrow a $$ and $$\overrightarrow b $$ whose projection on $$\overrightarrow c $$ is $${1 \over {\sqrt 3 }},$$ is
11
Let $$\theta \in \left( {0,{\pi \over 4}} \right)$$ and $${t_1} = {\left( {\tan \theta } \right)^{\tan \theta }},\,\,\,\,{t_2} = \,\,{\left( {\tan \theta } \right)^{\cot \theta }}$$, $${t_3}\, = \,\,{\left( {\cot \theta } \right)^{\tan \theta }}$$ and $${t_4}\, = \,\,{\left( {\cot \theta } \right)^{\cot \theta }},$$then
12
Let $${\overrightarrow A }$$ be vector parallel to line of intersection of planes $${P_1}$$ and $${P_2}.$$ Planes $${P_1}$$ is parallel to the vectors $$2\widehat j + 3\widehat k$$ and $$4\widehat j - 3\widehat k$$ and that $${P_2}$$ is parallel to $$\widehat j - \widehat k$$ and $$3\widehat i + 3\widehat j,$$ then the angle between vector $${\overrightarrow A }$$ and a given vector $$2\widehat i + \widehat j - 2\widehat k$$ is
13
Match the folowing :
(A)$$\,\,\,$$Two rays $$x + y = \left| a \right|$$ and $$ax - y=1$$ intersects each other in the
$$\,\,\,\,\,\,\,\,\,\,$$first quadrant in interval $$a \in \left( {{a_0},\,\,\infty } \right),$$ the value of $${{a_0}}$$ is
(B)$$\,\,\,$$ Point $$\left( {\alpha ,\beta ,\gamma } \right)$$ lies on the plane $$x+y+z=2.$$
$$\,\,\,\,\,\,\,\,\,\,\,$$Let $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k,\widehat k \times \left( {\widehat k \times \overrightarrow a } \right) = 0,$$ then $$\gamma = $$
(C)$$\,\,\,$$$$\left| {\int\limits_0^1 {\left( {1 - {y^2}} \right)dy} } \right| + \left| {\int\limits_1^0 {\left( {{y^2} - 1} \right)dy} } \right|$$
(D)$$\,\,\,$$If $$\sin A\,\,\sin B\,\,\sin C + \cos A\,\,\cos B = 1,$$ then the value of $$\sin C = $$

(p)$$\,\,\,$$ $$2$$
(q)$$\,\,\,$$ $${4 \over 3}$$
(r)$$\,\,\,$$ $$\left| {\int\limits_0^1 {\sqrt {1 - xdx} } } \right| + \left| {\int\limits_{ - 1}^0 {\sqrt {1 + xdx} } } \right|$$
(s)$$\,\,\,$$ $$1$$

14
$$\int {{{{x^2} - 1} \over {{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx = } $$
15
If $${{w - \overline w z} \over {1 - z}}$$ is purely real where $$w = \alpha + i\beta ,$$ $$\beta \ne 0$$ and $$z \ne 1,$$ then the set of the values of z is
16
Let $$a,\,b,\,c$$ be the sides of triangle where $$a \ne b \ne c$$ and $$\lambda \in R$$.
If the roots of the equation $${x^2} + 2\left( {a + b + c} \right)x + 3\lambda \left( {ab + bc + ca} \right) = 0$$ are real, then
17
Let $$a$$ and $$b$$ be the roots of the equation $${x^2} - 10cx - 11d = 0$$ and those $${x^2} - 10ax - 11b = 0$$ are $$c$$, $$d$$ then the value of $$a + b + c + d,$$ when $$a \ne b \ne c \ne d,$$ is
18
If $${a_n} = {3 \over 4} - {\left( {{3 \over 4}} \right)^2} + {\left( {{3 \over 4}} \right)^3} + ....{( - 1)^{n - 1}}{\left( {{3 \over 4}} \right)^n}\,\,and\,\,{b_n} = 1 - {a_n},$$, then find the least natural number $${n_0}$$ such that $${b_n}\,\, > \,\,{a_n}\,\forall \,n\,\, \ge \,\,{n_0}$$.
19
ABCD is a square of side length 2 units. $$C_1$$ is the circle touching all the sides of the square ABCD and $$C_2$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

If a circle is such that it touches the line L and the circle $$C_1$$ externally, such that both the circles are on the same side of the line, then the locus of centre of the circle is

20
ABCD is a square of side length 2 units. $$C_1$$ is the circle touching all the sides of the square ABCD and $$C_2$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

A line L' through A is drawn parallel to BD. Point S moves such that its distances from the BD and the vertex A are equal. If locus of S cuts L' at $$T_2$$ and $$T_3$$ and AC at $$T_1$$, then area of $$\Delta \,{T_1}\,{T_2}\,{T_3}$$ is

21
ABCD is a square of side length 2 units. $${C_1}$$ is the circle touching all the sides of the square ABCD and $${C_2}$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

If P is any point of $${C_1}$$ and Q is another point on $${C_2}$$, then


$${{P{A^2}\, + \,P{B^2}\, + P{C^2}\, + P{D^2}} \over {Q{A^2} + \,Q{B^2}\, + Q{C^2}\, + Q{D^2}}}$$ is equal to
22
The axis of a parabola is along the line $$y = x$$ and the distances of its vertex and focus from origin are $$\sqrt 2 $$ and $$2\sqrt 2 $$ respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is
23
Let a hyperbola passes through the focus of the ellipse $${{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1$$. The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the produced of eccentricities of given ellipse and hyperbola is $$1$$, then
24
The equations of the common tangents to the parabola $$y = {x^2}$$ and $$y = - {\left( {x - 2} \right)^2}$$ is/are
25
Match the following : $$(3, 0)$$ is the pt. from which three normals are drawn to the parabola $${y^2} = 4x$$ which meet the parabola in the points $$P, Q $$ and $$R$$. Then

Column $${\rm I}$$
(A) Area of $$\Delta PQR$$
(B) Radius of circumcircle of $$\Delta PQR$$
(C) Centroid of $$\Delta PQR$$
(D) Circumcentre of $$\Delta PQR$$

Column $${\rm I}$$$${\rm I}$$
(p) $$2$$
(q) $$5/2$$
(r) $$(5/2, 0)$$
(s) $$(2/3, 0)$$

26
One angle of an isosceles $$\Delta $$ is $${120^ \circ }$$ and radius of its incircle $$ = \sqrt 3 $$. Then the area of the triangle in sq. units is
27
In $$\Delta ABC$$, internal angle bisector of $$\angle A$$ meets side $$BC$$ in $$D$$. $$DE \bot AD$$ meets $$AC$$ in $$E$$ and $$AB$$ in $$F$$. Then
28
Match the following

Column $$I$$

(A) $$\sum\limits_{i = 1}^\infty {{{\tan }^{ - 1}}\left( {{1 \over {2{i^2}}}} \right) = t,} $$ then tan $$t=$$

(B) Sides $$a, b, c$$ of a triangle $$ABC$$ are in $$AP$$ and
$$\cos {\theta _1} = {a \over {b + c}},\,\cos {\theta _2} = {b \over {a + c}},\cos {\theta _3} = {c \over {a + b}},$$
then $${\tan ^2}\left( {{{{\theta _1}} \over 2}} \right) + {\tan ^2}\left( {{{{\theta _3}} \over 2}} \right) = $$

(C) A line is perpendicular to $$x + 2y + 2z = 0$$ and
passes through $$(0, 1, 0)$$. The perpendicular distance of this line from the origin is

Column $$II$$

(p) $$1$$

(q) $${{\sqrt 5 } \over 3}$$

(r) $${2 \over 3}$$

29
$$f(x)$$ is cubic polynomial with $$f(2)=18$$ and $$f(1)=-1$$. Also $$f(x)$$ has local maxima at $$x=-1$$ and $$f'(x)$$ has local minima at $$x=0$$, then
30
Let $$f\left( x \right) = \left\{ {\matrix{ {{e^x},} & {0 \le x \le 1} \cr {2 - {e^{x - 1}},} & {1 < x \le 2} \cr {x - e,} & {2 < x \le 3} \cr } } \right.$$ and $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,x \in \left[ {1,3} \right]} $$
then $$g(x)$$ has
31
For a twice differentiable function $$f(x),g(x)$$ is defined as $$4\sqrt {65} g\left( x \right) = \left( {f'{{\left( x \right)}^2} + f''\left( x \right)} \right)\,\,f\left( x \right)$$ on $$\,\,\,\left[ {a,\,\,\,e} \right].$$ If for $$a < b < c < d < e,\,f\left( a \right) = 0,f\left( b \right) = 2,f\left( c \right) = - 1,f\left( d \right) = 2,f\left( e \right) = 0$$ then find the minimum number of zeros of $$g(x)$$.
32
The value of $$5050{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx} \over {\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx}}$$ is.

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12