IIT-JEE 2005 Screening
Paper was held on Sun, May 22, 2005 9:00 AM
View Questions

Chemistry

Mathematics

1
$$\int\limits_{ - 2}^0 {\left\{ {{x^3} + 3{x^2} + 3x + 3 + \left( {x + 1} \right)\cos \left( {x + 1} \right)} \right\}\,\,dx} $$ is equal to
2
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ are three non-zero, non-coplanar vectors and
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
3
A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,$$ $$B$$ and $$C.$$ If the centroid $$D$$ $$(x, y, z)$$ of triangle $$ABC$$ satisfies the relation $${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = k,$$ then the value $$k$$ is
4
A six faced fair dice is thrown until $$1$$ comes, then the probability that $$1$$ comes in even no. of trials is
5
The differential equation $${{dy} \over {dx}} = {{\sqrt {1 - {y^2}} } \over y}$$ determines a family of circles with
6
The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xy$$
$$dx$$ is $$y=y(x),$$ If $$y(1)=1$$ and $$\left( {{x_0}} \right) = e$$, then $${{x_0}}$$ is equal to
7
For the primitive integral equation $$ydx + {y^2}dy = x\,dy;$$
$$x \in R,\,\,y > 0,y = y\left( x \right),\,y\left( 1 \right) = 1,$$ then $$y(-3)$$ is
8
If $$y=y(x)$$ and it follows the relation $$x\cos \,y + y\,cos\,x = \pi $$ then $$y''(0)=$$
9
The area bounded by the parabola $$y = {\left( {x + 1} \right)^2}$$ and
$$y = {\left( {x - 1} \right)^2}$$ and the line $$y=1/4$$ is
10
$$a,\,b,\,c$$ are integers, not all simultaneously equal and $$\omega $$ is cube root of unity $$\left( {\omega \ne 1} \right),$$ then minimum value of $$\left| {a + b\omega + c{\omega ^2}} \right|$$ is
11
If $$\int\limits_{\sin x}^1 {{t^2}f\left( t \right)dt = 1 - \sin x,} $$ then f$$\left( {{1 \over {\sqrt 3 }}} \right)$$ is
12
If $$P(x)$$ is a polynomial of degree less than or equal to $$2$$ and $$S$$ is the set of all such polynomials so that $$P(0)=0$$, $$P(1)=1$$ and $$P'\left( x \right) > 0\,\,\forall x \in \left[ {0,1} \right],$$ then
13
In a triangle $$ABC$$, $$a,b,c$$ are the lengths of its sides and $$A,B,C$$ are the angles of triangle $$ABC$$. The correct relation is given by
14
If $$f(x)$$ is a twice differentiable function and given that $$f\left( 1 \right) = 1;f\left( 2 \right) = 4,f\left( 3 \right) = 9$$, then
15
Tangent to the curve $$y = {x^2} + 6$$ at a point $$(1, 7)$$ touches the circle $${x^2} + {y^2} + 16x + 12y + c = 0$$ at a point $$Q$$. Then the coordinates of $$Q$$ are
16
The minimum area of triangle formed by the tangent to the $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ and coordinate axes is
17
A circle is given by $${x^2}\, + \,{(y\, - \,1\,)^2}\, = \,1$$, another circle C touches it externally and also the x-axis, then thelocus of its centre is
18
In the quadratic equation $$\,\,a{x^2} + bx + c = 0,$$ $$\Delta $$ $$ = {b^2} - 4ac$$ and $$\alpha + \beta ,\,{\alpha ^2} + {\beta ^2},\,{\alpha ^3} + {\beta ^3},$$ are in G.P. where $$\alpha ,\beta $$ are the root of $$\,\,a{x^2} + bx + c = 0,$$ then
19
If the LCM of p, q is $${r^2}\,{r^4}\,{s^2}$$, where r, s, t are prime numbers and p, q are the positive integers then number of ordered pair (p, q) is
20
A rectangle with sides of lenght (2m - 1) and (2n - 1) units is divided into squares of unit lenght by drawing parallel lines as shown in the diagram, then the number of rectangles possible with odd side lengths is IIT-JEE 2005 Screening Mathematics - Permutations and Combinations Question 35 English
21
The value of $$$\left( {\matrix{ {30} \cr 0 \cr } } \right)\left( {\matrix{ {30} \cr {10} \cr } } \right) - \left( {\matrix{ {30} \cr 1 \cr } } \right)\left( {\matrix{ {30} \cr {11} \cr } } \right) + \left( {\matrix{ {30} \cr 2 \cr } } \right)\left( {\matrix{ {30} \cr {12} \cr } } \right)....... + \left( {\matrix{ {30} \cr {20} \cr } } \right)\left( {\matrix{ {30} \cr {30} \cr } } \right)$$$
is where $$\left( {\matrix{ n \cr r \cr } } \right) = {}^n{C_r}$$
22
$$\cos \left( {\alpha - \beta } \right) = 1$$ and $$\,\cos \left( {\alpha + \beta } \right) = 1/e$$ where $$\alpha ,\,\beta \in \left[ { - \pi ,\pi } \right].$$
Paris of $$\alpha ,\,\beta $$ which satisfy both the equations is/are

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12