1
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only CORRECT combination?
A
(I) (ii) (R)
B
(III) (iv) (P)
C
(II) (iii) (S)
D
(IV) (i) (S)
2
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only CORRECT combination?
A
(III) (iii) (R)
B
(IV) (iv) (S)
C
(II) (ii) (Q)
D
(I0 (i) (P)
3
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
Change Language
A charged particle (electron or proton) is introduced at the origin (x=0,y=0,z=0) with a given initial velocity $$\overrightarrow v .$$ A uniform electric field $$\overrightarrow E $$ and a uniform magnetic field $$\overrightarrow B $$ exist everywhere. The velocity $$\overrightarrow v ,$$ electric field $$\overrightarrow E $$ and magnetic field $$\overrightarrow B $$ are given in column $$1,2$$ and $$3,$$ respectively. The quantities $${E_0},{B_0}$$ are positive in magnitude.

Column 1 Column 2 Column 3
(I) Electron with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$   (i) $$\overrightarrow E = {E_0}\widehat z$$ (P) $$\overrightarrow B = - {B_0}\widehat x$$
(II) Electron with $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ (ii) $$\overrightarrow E = - {E_0}\widehat y$$ (Q) $$\overrightarrow B = {B_0}\widehat x$$
(III) Proton with $$\overrightarrow v = 0$$    (iii) $$\overrightarrow E = - {E_0}\widehat x$$ (R) $$\overrightarrow B = {B_0}\widehat y$$
(IV) Proton with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ (iv) $$\overrightarrow E = {E_0}\widehat x$$ (S) $$\overrightarrow B = {B_0}\widehat z$$
In which case will the particle move in a straight line with constant velocity?
A
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {ii} \right)\left( R \right)$$
B
$$\left( {{\rm I}V} \right)\left( i \right)\left( S \right)$$
C
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {iii} \right)\left( P \right)$$
D
$$\left( {{\rm I}{\rm I}} \right)\left( {iii} \right)\left( S \right)$$
4
JEE Advanced 2017 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
A block $$M$$ hangs vertically at the bottom end of a uniform rope of constant mass per unit length. The top end of the rope is attached to fixed rigid support at $$O.$$ A transverse wave pulse (Pulse 1) of wavelength $${\lambda _0}$$ is produced at point $$O$$ on the rope. The pulse takes time $${T_{OA}}$$ to reach point $$A.$$ If the wave pulse of wavelength $${\lambda _0}$$ is produced at point $$A$$ (Pulse 2) without disturbing the position of $$M$$ it takes time $${T_{AO}}$$ to reach point $$O.$$ which of the following options is/are correct?

JEE Advanced 2017 Paper 1 Offline Physics - Waves Question 31 English
A
The time $${T_{AO}} = {T_{OA}}$$
B
The velocities of the two pulses (Pulse 1 and Pulse 2) are the same at the midpoint of rope
C
The wavelength of Pulse 1 becomes longer when it reaches point $$A$$
D
The velocity of any pulse along the rope is independent of its frequency and wavelength
JEE Advanced Papers
EXAM MAP