1
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only INCORRECT combination?
A
(I) (iii) (P)
B
(II) (iv) (Q)
C
(II) (ii) (P)
D
(III) (i) (R)
2
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only CORRECT combination?
A
(I) (ii) (R)
B
(III) (iv) (P)
C
(II) (iii) (S)
D
(IV) (i) (S)
3
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only CORRECT combination?
A
(III) (iii) (R)
B
(IV) (iv) (S)
C
(II) (ii) (Q)
D
(I0 (i) (P)
4
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
Change Language
A charged particle (electron or proton) is introduced at the origin (x=0,y=0,z=0) with a given initial velocity $$\overrightarrow v .$$ A uniform electric field $$\overrightarrow E $$ and a uniform magnetic field $$\overrightarrow B $$ exist everywhere. The velocity $$\overrightarrow v ,$$ electric field $$\overrightarrow E $$ and magnetic field $$\overrightarrow B $$ are given in column $$1,2$$ and $$3,$$ respectively. The quantities $${E_0},{B_0}$$ are positive in magnitude.

Column 1 Column 2 Column 3
(I) Electron with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$   (i) $$\overrightarrow E = {E_0}\widehat z$$ (P) $$\overrightarrow B = - {B_0}\widehat x$$
(II) Electron with $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ (ii) $$\overrightarrow E = - {E_0}\widehat y$$ (Q) $$\overrightarrow B = {B_0}\widehat x$$
(III) Proton with $$\overrightarrow v = 0$$    (iii) $$\overrightarrow E = - {E_0}\widehat x$$ (R) $$\overrightarrow B = {B_0}\widehat y$$
(IV) Proton with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ (iv) $$\overrightarrow E = {E_0}\widehat x$$ (S) $$\overrightarrow B = {B_0}\widehat z$$
In which case will the particle move in a straight line with constant velocity?
A
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {ii} \right)\left( R \right)$$
B
$$\left( {{\rm I}V} \right)\left( i \right)\left( S \right)$$
C
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {iii} \right)\left( P \right)$$
D
$$\left( {{\rm I}{\rm I}} \right)\left( {iii} \right)\left( S \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12