1
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
For a real number $$\alpha $$, if the system
$$\left[ {\matrix{ 1 & \alpha & {{\alpha ^2}} \cr \alpha & 1 & \alpha \cr {{\alpha ^2}} & \alpha & 1 \cr } } \right]\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 1 \cr { - 1} \cr 1 \cr } } \right]$$
of linear equations, has infinitely many solutions, then 1 + $$\alpha $$ + $$\alpha $$2 =
$$\left[ {\matrix{ 1 & \alpha & {{\alpha ^2}} \cr \alpha & 1 & \alpha \cr {{\alpha ^2}} & \alpha & 1 \cr } } \right]\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 1 \cr { - 1} \cr 1 \cr } } \right]$$
of linear equations, has infinitely many solutions, then 1 + $$\alpha $$ + $$\alpha $$2 =
Your input ____
2
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
The sides of a right angled triangle are in arithmetic progression. If the triangle has area 24, then what is the length of its smallest side?
Your input ____
3
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
Let f : R $$ \to $$ R be a differentiable function such that f(0) = 0, $$f\left( {{\pi \over 2}} \right) = 3$$ and f'(0) = 1.
If $$g(x) = \int\limits_x^{\pi /2} {[f'(t)\text{cosec}\,t - \cot t\,\text{cosec}\,t\,f(t)]dt} $$
for $$x \in \left( {0,\,{\pi \over 2}} \right]$$, then $$\mathop {\lim }\limits_{x \to 0} g(x)$$ =
If $$g(x) = \int\limits_x^{\pi /2} {[f'(t)\text{cosec}\,t - \cot t\,\text{cosec}\,t\,f(t)]dt} $$
for $$x \in \left( {0,\,{\pi \over 2}} \right]$$, then $$\mathop {\lim }\limits_{x \to 0} g(x)$$ =
Your input ____
4
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
For how many values of p, the circle x2 + y2 + 2x + 4y $$-$$ p = 0 and the coordinate axes have exactly three common points?
Your input ____
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978