1
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
Change Language
A stationary source emits sound of frequency $${f_0} = 492\,Hz.$$ The sound is reflected by a large car approaching the source with a speed of $$2\,m{s^{ - 1.}}$$ The reflected signal is received by the source and superposed with the original.

What will be the beat frequency of the resulting signal in $$Hz$$? (Given that the speed of sound in air is $$330\,m{s^{ - 1}}$$ and the car reflects the sound at the frequency it has received).
Your input ____
2
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
Change Language
$${}^{131}{\rm I}$$ is an isotope of Iodine that $$B$$ decays to an isotope of Xenon with a half-life of $$8$$ days. A small amount of a serum labelled with $${}^{131}{\rm I}$$ is injected into the blood of a person. The activity of the amount of $${}^{131}{\rm I}$$ injected was $$2.4 \times {10^5}$$ Becquerel $$(Bq).$$ It is known that the injected serum will get distributed uniformly in the blood stream in less than half an hour. After $$11.5$$ hours, $$2.5$$ ml of blood is drawn from person's body, and gives an activity of $$115$$ $$Bq$$. The total volume of blood in the person's body, in liters is approximately (you may use $${e^x} \approx 1 + x\,\,$$ for $$\left| x \right| < < 1$$ and $$\ln 2 \approx 0.7).$$
Your input ____
3
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
Change Language
A charged particle (electron or proton) is introduced at the origin (x=0,y=0,z=0) with a given initial velocity $$\overrightarrow v .$$ A uniform electric field $$\overrightarrow E $$ and a uniform magnetic field $$\overrightarrow B $$ exist everywhere. The velocity $$\overrightarrow v ,$$ electric field $$\overrightarrow E $$ and magnetic field $$\overrightarrow B $$ are given in column $$1,2$$ and $$3,$$ respectively. The quantities $${E_0},{B_0}$$ are positive in magnitude.

Column 1 Column 2 Column 3
(I) Electron with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$   (i) $$\overrightarrow E = {E_0}\widehat z$$ (P) $$\overrightarrow B = - {B_0}\widehat x$$
(II) Electron with $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ (ii) $$\overrightarrow E = - {E_0}\widehat y$$ (Q) $$\overrightarrow B = {B_0}\widehat x$$
(III) Proton with $$\overrightarrow v = 0$$    (iii) $$\overrightarrow E = - {E_0}\widehat x$$ (R) $$\overrightarrow B = {B_0}\widehat y$$
(IV) Proton with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ (iv) $$\overrightarrow E = {E_0}\widehat x$$ (S) $$\overrightarrow B = {B_0}\widehat z$$
In which case will the particle describe a helical path with axis along the positive $$z$$ direction?
A
$$\left( {{\rm I}V} \right)\left( i \right)\left( S \right)$$
B
$$\left( {{\rm I}{\rm I}} \right)\left( {ii} \right)\left( R \right)$$
C
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {iii} \right)\left( P \right)$$
D
$$\left( {{\rm I}V} \right)\left( {ii} \right)\left( R \right)$$
4
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
Change Language
A charged particle (electron or proton) is introduced at the origin (x=0,y=0,z=0) with a given initial velocity $$\overrightarrow v .$$ A uniform electric field $$\overrightarrow E $$ and a uniform magnetic field $$\overrightarrow B $$ exist everywhere. The velocity $$\overrightarrow v ,$$ electric field $$\overrightarrow E $$ and magnetic field $$\overrightarrow B $$ are given in column $$1,2$$ and $$3,$$ respectively. The quantities $${E_0},{B_0}$$ are positive in magnitude.

Column 1 Column 2 Column 3
(I) Electron with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$   (i) $$\overrightarrow E = {E_0}\widehat z$$ (P) $$\overrightarrow B = - {B_0}\widehat x$$
(II) Electron with $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ (ii) $$\overrightarrow E = - {E_0}\widehat y$$ (Q) $$\overrightarrow B = {B_0}\widehat x$$
(III) Proton with $$\overrightarrow v = 0$$    (iii) $$\overrightarrow E = - {E_0}\widehat x$$ (R) $$\overrightarrow B = {B_0}\widehat y$$
(IV) Proton with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ (iv) $$\overrightarrow E = {E_0}\widehat x$$ (S) $$\overrightarrow B = {B_0}\widehat z$$
In which case would the particle move in a straight line along the negative direction of $$y$$-axis (i.e., move along $$ - \widehat y$$)?
A
$$\left( {{\rm I}{\rm I}} \right)\left( {iii} \right)\left( Q \right)$$
B
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {ii} \right)\left( R \right)$$
C
$$\left( {{\rm I}V} \right)\left( {ii} \right)\left( S \right)$$
D
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {ii} \right)\left( P \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12