1
JEE Advanced 2017 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
In the circuit shown, $$L = 1\,\mu H,C = 1\,\mu F\,$$ and $$R = 1\,k\Omega .$$ They are connected in series with an a.c. source $$V = {V_0}\sin \omega t$$ as shown.

Which of the following options is/are correct?

JEE Advanced 2017 Paper 1 Offline Physics - Alternating Current Question 15 English
A
The current will be in phase with the voltage if $$\omega = {10^4}$$ $$rad.{s^{ - 1}}$$
B
The frequency at which the current will be in phase with the voltage is independent of $$R$$
C
At $$\omega \sim 0$$ the current flowing through the circuit becomes nearly zero
D
At $$\omega > > {10^6}rad.{s^{ - 1}},$$ the circuit behaves like a capacitor
2
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
Change Language
A drop of liquid of radius $$R = {10^{ - 2}}\,m$$ having surface tension $$S = {{0.1} \over {4\pi }}N{m^{ - 1}}$$ divides itself into $$K$$ identical drops. In this process the total change in the surface energy $$\Delta U = {10^{ - 3}}\,J.$$ If $$K = {10^\alpha }$$ then the value of $$\alpha $$ is
Your input ____
3
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
Change Language
An electron in a hydrogen atom undergoes a transition from an orbit with quantum number $${n_i}$$ to another with quantum number $${n_f}$$. $${V_i}$$ and $${V_f}$$ are respectively the initial and final potential energies of the electron. If $${{{V_i}} \over {{V_f}}} = 6.25$$, then the smallest possible $${n_f}$$ is
Your input ____
4
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
Change Language
A charged particle (electron or proton) is introduced at the origin (x=0,y=0,z=0) with a given initial velocity $$\overrightarrow v .$$ A uniform electric field $$\overrightarrow E $$ and a uniform magnetic field $$\overrightarrow B $$ exist everywhere. The velocity $$\overrightarrow v ,$$ electric field $$\overrightarrow E $$ and magnetic field $$\overrightarrow B $$ are given in column $$1,2$$ and $$3,$$ respectively. The quantities $${E_0},{B_0}$$ are positive in magnitude.

Column 1 Column 2 Column 3
(I) Electron with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$   (i) $$\overrightarrow E = {E_0}\widehat z$$ (P) $$\overrightarrow B = - {B_0}\widehat x$$
(II) Electron with $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ (ii) $$\overrightarrow E = - {E_0}\widehat y$$ (Q) $$\overrightarrow B = {B_0}\widehat x$$
(III) Proton with $$\overrightarrow v = 0$$    (iii) $$\overrightarrow E = - {E_0}\widehat x$$ (R) $$\overrightarrow B = {B_0}\widehat y$$
(IV) Proton with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ (iv) $$\overrightarrow E = {E_0}\widehat x$$ (S) $$\overrightarrow B = {B_0}\widehat z$$
In which case will the particle move in a straight line with constant velocity?
A
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {ii} \right)\left( R \right)$$
B
$$\left( {{\rm I}V} \right)\left( i \right)\left( S \right)$$
C
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\left( {iii} \right)\left( P \right)$$
D
$$\left( {{\rm I}{\rm I}} \right)\left( {iii} \right)\left( S \right)$$
JEE Advanced Papers
EXAM MAP