1
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By appropriately matching the information given in the three columns of the following table.

Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.

Column - 1 Column - 2 Column - 3
(i) $${x^2} + {y^2} = a$$ $$my = {m^2}x + a$$ $$\left( {{a \over {{m^2}}},\,{{2a} \over m}} \right)$$
(ii) $${x^2}{a^2}{y^2} = {a^2}]$$ $$y = mx + a\sqrt {{m^2} + 1} $$ $$\left( {{{ - ma} \over {\sqrt {{m^2} + 1} }},\,{a \over {\sqrt {{m^2} + 1} }}} \right)$$
(iii) $${y^2} = 4ax$$ $$y = mx + \sqrt {{a^2}{m^2} - 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} + 1} }},\,{1 \over {\sqrt {{a^2}{m^2} + 1} }}} \right)$$
(iv) $${x^2} - {a^2}{y^2} = {a^2}$$ $$y = mx + \sqrt {{a^2}{m^2} + 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} - 1} }},\,{{ - 1} \over {\sqrt {{a^2}{m^2} - 1} }}} \right)$$
For $$a = \sqrt 2 $$, if a tangent is drawn to a suitable conic (Column 1) at the point of contact ($$-$$1, 1), then which of the following options is the only CORRECT combination for obtaining its equation?
A
(I) (ii) Q)
B
(I) (ii) (P)
C
(III) (i) (P)
D
(II) (ii) (Q)
2
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By appropriately matching the information given in the three columns of the following table.

Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.

Column - 1 Column - 2 Column - 3
(i) $${x^2} + {y^2} = a$$ $$my = {m^2}x + a$$ $$\left( {{a \over {{m^2}}},\,{{2a} \over m}} \right)$$
(ii) $${x^2}{a^2}{y^2} = {a^2}]$$ $$y = mx + a\sqrt {{m^2} + 1} $$ $$\left( {{{ - ma} \over {\sqrt {{m^2} + 1} }},\,{a \over {\sqrt {{m^2} + 1} }}} \right)$$
(iii) $${y^2} = 4ax$$ $$y = mx + \sqrt {{a^2}{m^2} - 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} + 1} }},\,{1 \over {\sqrt {{a^2}{m^2} + 1} }}} \right)$$
(iv) $${x^2} - {a^2}{y^2} = {a^2}$$ $$y = mx + \sqrt {{a^2}{m^2} + 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} - 1} }},\,{{ - 1} \over {\sqrt {{a^2}{m^2} - 1} }}} \right)$$
The tangent to a suitable conic (Column 1) at $$\left( {\sqrt 3 ,\,{1 \over 2}} \right)$$ is found to be $$\sqrt 3 x + 2y = 4$$, then which of the following options is the only CORRECT combination?
A
(IV) (iv) (S)
B
(II) (iv) (R)
C
(IV) (iii) (S)
D
(II) (ii) (R)
3
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By appropriately matching the information given in the three columns of the following table.

Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.

Column - 1 Column - 2 Column - 3
(i) $${x^2} + {y^2} = a$$ $$my = {m^2}x + a$$ $$\left( {{a \over {{m^2}}},\,{{2a} \over m}} \right)$$
(ii) $${x^2}{a^2}{y^2} = {a^2}]$$ $$y = mx + a\sqrt {{m^2} + 1} $$ $$\left( {{{ - ma} \over {\sqrt {{m^2} + 1} }},\,{a \over {\sqrt {{m^2} + 1} }}} \right)$$
(iii) $${y^2} = 4ax$$ $$y = mx + \sqrt {{a^2}{m^2} - 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} + 1} }},\,{1 \over {\sqrt {{a^2}{m^2} + 1} }}} \right)$$
(iv) $${x^2} - {a^2}{y^2} = {a^2}$$ $$y = mx + \sqrt {{a^2}{m^2} + 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} - 1} }},\,{{ - 1} \over {\sqrt {{a^2}{m^2} - 1} }}} \right)$$
If a tangent to a suitable conic (Column 1) is found to be y = x + 8 and its point of contact is (8, 16), then which of the following options is the only CORRECT combination?
A
(III) (i) (P)
B
(I) (ii) (Q)
C
(II) (iv) (R)
D
(III) (ii) (Q)
4
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only INCORRECT combination?
A
(I) (iii) (P)
B
(II) (iv) (Q)
C
(II) (ii) (P)
D
(III) (i) (R)
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12