Let $$I = \int {{{{e^x}} \over {{e^{4x}} + {e^{2x}} + 1}}dx,\,\,J = \int {{{{e^{ - x}}} \over {{e^{ - 4x}} + {e^{ - 2x}} + 1}}dx.} } $$ Then
for an arbitrary constant $$C$$, the value of $$J -I$$ equals
A
$${1 \over 2}\log \left( {{{{e^{4x}} - {e^{2x}} + 1} \over {{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B
$${1 \over 2}\log \left( {{{{e^{2x}} + {e^x} + 1} \over {{e^{2x}} - {e^x} + 1}}} \right) + C$$
C
$${1 \over 2}\log \left( {{{{e^{2x}} - {e^x} + 1} \over {{e^{2x}} + {e^x} + 1}}} \right) + C$$
D
$${1 \over 2}\log \left( {{{{e^{4x}} + {e^{2x}} + 1} \over {{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$