1
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
Let $$F(x)$$ be an indefinite integral of $$si{n^2}x.$$

STATEMENT-1: The function $$F(x)$$ satisfies $$F\left( {x + \pi } \right) = F\left( x \right)$$
for all real $$x$$. because

STATEMENT-2: $${\sin ^2}\left( {x + \pi } \right) = {\sin ^2}x$$ for all real $$x$$.

A
Statement-1 is True, Statement-2 is True; Statement-2 is is a correct explanation for Statement-1.
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
C
Statement- 1 is True, Statement-2 is False.
D
Statement-1 is False, Statement-2 is True.
2
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
$$\int {{{{x^2} - 1} \over {{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx = }$$
A
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^2}}} + c$$
B
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^3}}} + c$$
C
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x}}} + c$$
D
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{2x^2}}} + c$$
3
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+3
-0.75
If $$\int\limits_{\sin x}^1 {{t^2}f\left( t \right)dt = 1 - \sin x,}$$ then f$$\left( {{1 \over {\sqrt 3 }}} \right)$$ is
A
$${1 \over 3}$$
B
$${{1 \over {\sqrt 3 }}}$$
C
$$3$$
D
$${\sqrt 3 }$$
4
IIT-JEE 1995 Screening
MCQ (Single Correct Answer)
+3
-0.75
The value of the integral $$\int {{{{{\cos }^3}x + {{\cos }^5}x} \over {{{\sin }^2}x + {{\sin }^4}x}}} \,dx\,$$ is
A
$$\sin x - 6{\tan ^{ - 1}}\left( {\sin x} \right) + c$$
B
$$\sin x - 2{\left( {\sin x} \right)^{ - 1}} + c$$
C
$$\sin x - 2{\left( {\sin x} \right)^{ - 1}} - 6{\tan ^{ - 1}}\left( {\sin x} \right) + c$$
D
$$\,\sin x - 2{\left( {\sin x} \right)^{ - 1}} + 5{\tan ^{ - 1}}\left( {\sin x} \right) + c$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12