1
IIT-JEE 2000 Screening
+3
-0.75
The incentre of the triangle with vertices $$\left( {1,\,\sqrt 3 } \right),\left( {0,\,0} \right)$$ and $$\left( {2,\,0} \right)$$ is
A
$$\left( {1,\,{{\sqrt 3 } \over 2}} \right)$$
B
$$\left( {{2 \over 3},\,{1 \over {\sqrt 3 }}} \right)$$
C
$$\left( {{2 \over 3},\,{{\sqrt 3 } \over 2}} \right)$$
D
$$\left( {1,\,{1 \over {\sqrt 3 }}} \right)$$
2
IIT-JEE 1999
+2
-0.5
Lt $$PQR$$ be a right angled isosceles triangle, right angled at $$P(2, 1)$$. If the equation of the line $$QR$$ is $$2x + y = 3,$$ then the equation representing the pair of lines $$PQ$$ and $$PR$$ is
A
$$3{x^2} - 3{y^2} + 8xy + 20x + 10y + 25 = 0$$
B
$$3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0$$
C
$$3{x^2} - 3{y^2} + 8xy + 10x + 15y + 20 = 0$$
D
$$3{x^2} - 3{y^2} - 8xy - 10x - 15y - 20 = 0$$
3
IIT-JEE 1999
+2
-0.5
If $${x_1},\,{x_2},\,{x_3}$$ as well as $${y_1},\,{y_2},\,{y_3}$$, are in G.P. with the same common ratio, then the points $$\left( {{x_1},\,{y_1}} \right),\left( {{x_2},\,{y_2}} \right)$$ and $$\left( {{x_3},\,{y_3}} \right).$$
A
lie on a straight line
B
lie on an ellipse
C
lie on a circle
D
are vertices of a triangle
4
IIT-JEE 1998
+2
-0.5
The diagonals of a parralleogram $$PQRS$$ are along the lines $$x + 3y = 4$$ and $$6x - 2y = 7$$. Then $$PQRS$$ must be a.
A
rectangle
B
square
C
D
rhombus.
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination