1
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
The greatest integer less than or equal to

$$\int_{1}^{2} \log _{2}\left(x^{3}+1\right) d x+\int_{1}^{\log _{2} 9}\left(2^{x}-1\right)^{\frac{1}{3}} d x$$

is ___________.
2
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Let $${g_i}:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R,i = 1,2$$, and $$f:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R$$ be functions such that $${g_1}(x) = 1,{g_2}(x) = |4x - \pi |$$ and $$f(x) = {\sin ^2}x$$, for all $$x \in \left[ {{\pi \over 8},{{3\pi } \over 8}} \right]$$. Define $${S_i} = \int\limits_{{\pi \over 8}}^{{{3\pi } \over 8}} {f(x).{g_i}(x)dx}$$, i = 1, 2

The value of $${{16{S_1}} \over \pi }$$ is _____________.
3
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Let $${g_i}:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R,i = 1,2$$, and $$f:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R$$ be functions such that $${g_1}(x) = 1,{g_2}(x) = |4x - \pi |$$ and $$f(x) = {\sin ^2}x$$, for all $$x \in \left[ {{\pi \over 8},{{3\pi } \over 8}} \right]$$. Define $${S_i} = \int\limits_{{\pi \over 8}}^{{{3\pi } \over 8}} {f(x).{g_i}(x)dx}$$, i = 1, 2

The value of $${{48{S_2}} \over {{\pi ^2}}}$$ is ___________.
4
JEE Advanced 2021 Paper 2 Online
Numerical
+4
-0
For any real number x, let [ x ] denote the largest integer less than or equal to x. If $$I = \int\limits_0^{10} {\left[ {\sqrt {{{10x} \over {x + 1}}} } \right]dx}$$, then the value of 9I is __________.
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12