1
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
Let $${g_i}:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R,i = 1,2$$, and $$f:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R$$ be functions such that $${g_1}(x) = 1,{g_2}(x) = |4x - \pi |$$ and $$f(x) = {\sin ^2}x$$, for all $$x \in \left[ {{\pi \over 8},{{3\pi } \over 8}} \right]$$. Define $${S_i} = \int\limits_{{\pi \over 8}}^{{{3\pi } \over 8}} {f(x).{g_i}(x)dx} $$, i = 1, 2

The value of $${{16{S_1}} \over \pi }$$ is _____________.
Your input ____
2
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
Let $${g_i}:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R,i = 1,2$$, and $$f:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R$$ be functions such that $${g_1}(x) = 1,{g_2}(x) = |4x - \pi |$$ and $$f(x) = {\sin ^2}x$$, for all $$x \in \left[ {{\pi \over 8},{{3\pi } \over 8}} \right]$$. Define $${S_i} = \int\limits_{{\pi \over 8}}^{{{3\pi } \over 8}} {f(x).{g_i}(x)dx} $$, i = 1, 2

The value of $${{48{S_2}} \over {{\pi ^2}}}$$ is ___________.
Your input ____
3
JEE Advanced 2021 Paper 2 Online
Numerical
+4
-0
Change Language
For any real number x, let [ x ] denote the largest integer less than or equal to x. If $$I = \int\limits_0^{10} {\left[ {\sqrt {{{10x} \over {x + 1}}} } \right]dx} $$, then the value of 9I is __________.
Your input ____
4
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Change Language
Let $$f:R \to R$$ be a differentiable function such that its derivative f' is continuous and f($$\pi $$) = $$-$$6.

If $$F:[0,\pi ] \to R$$ is defined by $$F(x) = \int_0^x {f(t)dt} $$, and if $$\int_0^\pi {(f'(x)} + F(x))\cos x\,dx$$ = 2

then the value of f(0) is ...........
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12