1
IIT-JEE 1992
MCQ (Single Correct Answer)
+2
-0.5
The expansion $${\left( {x + {{\left( {{x^3} - 1} \right)}^{{1 \over 2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{{1 \over 2}}}} \right)^5}$$ is a polynomial of degree
A
5
B
6
C
7
D
8
2
IIT-JEE 1986
MCQ (Single Correct Answer)
+2
-0.5
If $${C_r}$$ stands for $${}^n{C_r},$$ then the sum of the series $${{2\left( {{n \over 2}} \right){\mkern 1mu} !{\mkern 1mu} \left( {{n \over 2}} \right){\mkern 1mu} !} \over {n!}}\left[ {C_0^2 - 2C_1^2 + 3C_2^2 - } \right......... + {\left( { - 1} \right)^n}\left( {n + 1} \right)C_n^2\mathop ]\limits^ \sim \,,$$
where $$n$$ is an even positive integer, is equal to
A
0
B
$${\left( { - 1} \right)^{n/2}}\left( {n + 1} \right)$$
C
$${\left( { - 1} \right)^{n/2}}\left( {n + 2} \right)$$
D
$${\left( { - 1} \right)^n}n$$
3
IIT-JEE 1983
MCQ (Single Correct Answer)
+1
-0.25
Given positive integers $$r > 1,\,n > 2$$ and that the coefficient of $$\left( {3r} \right)$$th and $$\left( {r + 2} \right)$$th terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$ are equal. Then
A
$$n = 2r$$
B
$$n = 2r + 1$$
C
$$n = 3r$$
D
none of these
4
IIT-JEE 1983
MCQ (Single Correct Answer)
+1
-0.25
The coefficient of $${x^4}$$ in $${\left( {{x \over 2} - {3 \over {{x^2}}}} \right)^{10}}$$ is
A
$${{{405} \over {256}}}$$
B
$${{{504} \over {259}}}$$
C
$${{{450} \over {263}}}$$
D
none of these
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12