1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
For $$r = 0,\,1,....,$$ let $${A_r},\,{B_r}$$ and $${C_r}$$ denote, respectively, the coefficient of $${X^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},$$ $${\left( {1 + x} \right)^{20}}$$ and $${\left( {1 + x} \right)^{30}}.$$
Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
A
$$\left( {{B_{10}} - {C_{10}}} \right)$$
B
$${A_{10}}\left( {{B^2}_{10}{C_{10}}{A_{10}}} \right)$$
C
$$0$$
D
$${{C_{10}} - {B_{10}}}$$
2
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
The value of $$$\left( {\matrix{ {30} \cr 0 \cr } } \right)\left( {\matrix{ {30} \cr {10} \cr } } \right) - \left( {\matrix{ {30} \cr 1 \cr } } \right)\left( {\matrix{ {30} \cr {11} \cr } } \right) + \left( {\matrix{ {30} \cr 2 \cr } } \right)\left( {\matrix{ {30} \cr {12} \cr } } \right)....... + \left( {\matrix{ {30} \cr {20} \cr } } \right)\left( {\matrix{ {30} \cr {30} \cr } } \right)$$$
is where $$\left( {\matrix{ n \cr r \cr } } \right) = {}^n{C_r}$$
A
$$\left( {\matrix{ {30} \cr {10} \cr } } \right)$$
B
$$\left( {\matrix{ {30} \cr {15} \cr } } \right)$$
C
$$\left( {\matrix{ {60} \cr {30} \cr } } \right)$$
D
$$\left( {\matrix{ {31} \cr {10} \cr } } \right)$$
3
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $${}^{n - 1}{C_r} = \left( {{k^2} - 3} \right)\,{}^n{C_{r + 1,}}$$ then $$k \in $$
A
$$\left( { - \infty , - 2} \right)$$
B
$$\left[ {2,\infty } \right)$$
C
$$\left[ { - \sqrt 3 ,\sqrt 3 } \right]$$
D
$$\left( {\sqrt 3 ,2} \right]$$
4
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
Coefficient of $${t^{24}}$$ in $${\left( {1 + {t^2}} \right)^{12}}\left( {1 + {t^{12}}} \right)\left( {1 + {t^{24}}} \right)$$ is
A
$${}^{12}{C_6} + 3$$
B
$${}^{12}{C_6} + 1$$
C
$${}^{12}{C_6}$$
D
$${}^{12}{C_6} + 2$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12