Let $L_1$ be the line of intersection of the planes given by the equations
$2x + 3y + z = 4$ and $x + 2y + z = 5$.
Let $L_2$ be the line passing through the point $P(2, -1, 3)$ and parallel to $L_1$. Let $M$ denote the plane given by the equation
$2x + y - 2z = 6$.
Suppose that the line $L_2$ meets the plane $M$ at the point $Q$. Let $R$ be the foot of the perpendicular drawn from $P$ to the plane $M$.
Then which of the following statements is (are) TRUE?
Let $\mathbb{R}^3$ denote the three-dimensional space. Take two points $P=(1,2,3)$ and $Q=(4,2,7)$. Let $\operatorname{dist}(X, Y)$ denote the distance between two points $X$ and $Y$ in $\mathbb{R}^3$. Let
$$ \begin{gathered} S=\left\{X \in \mathbb{R}^3:(\operatorname{dist}(X, P))^2-(\operatorname{dist}(X, Q))^2=50\right\} \text { and } \\ T=\left\{Y \in \mathbb{R}^3:(\operatorname{dist}(Y, Q))^2-(\operatorname{dist}(Y, P))^2=50\right\} . \end{gathered} $$
Then which of the following statements is (are) TRUE?
$$ \begin{aligned} &P_{1}: 10 x+15 y+12 z-60=0 \\\\ &P_{2}:-2 x+5 y+4 z-20=0 \end{aligned} $$
Which of the following straight lines can be an edge of some tetrahedron whose two faces lie on $$P_{1}$$ and $$P_{2}$$ ?