1
JEE Advanced 2022 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$S$$ be the reflection of a point $$Q$$ with respect to the plane given by

$$ \vec{r}=-(t+p) \hat{\imath}+t \hat{\jmath}+(1+p) \hat{k} $$

where $$t, p$$ are real parameters and $$\hat{\imath}, \hat{\jmath}, \hat{k}$$ are the unit vectors along the three positive coordinate axes. If the position vectors of $$Q$$ and $$S$$ are $$10 \hat{\imath}+15 \hat{\jmath}+20 \hat{k}$$ and $$\alpha \hat{\imath}+\beta \hat{\jmath}+\gamma \hat{k}$$ respectively, then which of the following is/are TRUE ?
A
$$3(\alpha+\beta)=-101$$
B
$$3(\beta+\gamma)=-71$$
C
$$3(\gamma+\alpha)=-86$$
D
$$3(\alpha+\beta+\gamma)=-121$$
2
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$\alpha $$2 + $$\beta $$2 + $$\gamma $$2 $$ \ne $$ 0 and $$\alpha $$ + $$\gamma $$ = 1. Suppose the point (3, 2, $$-$$1) is the mirror image of the point (1, 0, $$-$$1) with respect to the plane $$\alpha $$x + $$\beta $$y + $$\gamma $$z = $$\delta $$. Then which of the following statements is/are TRUE?
A
$$\alpha $$ + $$\beta $$ = 2
B
$$\delta $$ $$-$$ $$\gamma $$ = 3
C
$$\delta $$ + $$\beta $$ = 4
D
$$\alpha $$ + $$\beta $$ + $$\gamma $$ = $$\delta $$
3
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let L1 and L2 be the following straight lines.

$${L_1}:{{x - 1} \over 1} = {y \over { - 1}} = {{z - 1} \over 3}$$ and $${L_2}:{{x - 1} \over { - 3}} = {y \over { - 1}} = {{z - 1} \over 1}$$.

Suppose the straight line

$$L:{{x - \alpha } \over l} = {{y - 1} \over m} = {{z - \gamma } \over { - 2}}$$

lies in the plane containing L1 and L2 and passes through the point of intersection of L1 and L2. If the line L bisects the acute angle between the lines L1 and L2, then which of the following statements is/are TRUE?
A
$$\alpha $$ $$-$$ $$\gamma $$ = 3
B
l + m = 2
C
$$\alpha $$ $$-$$ $$\gamma $$ = 1
D
l + m = 0
4
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Three lines $${L_1}:r = \lambda \widehat i$$, $$\lambda $$ $$ \in $$ R,

$${L_2}:r = \widehat k + \mu \widehat j$$, $$\mu $$ $$ \in $$ R and

$${L_3}:r = \widehat i + \widehat j + v\widehat k$$, v $$ \in $$ R are given.

For which point(s) Q on L2 can we find a point P on L1 and a point R on L3 so that P, Q and R are collinear?
A
$$\widehat k$$
B
$$\widehat k$$ + $$\widehat j$$
C
$$\widehat k$$ + $${1 \over 2}$$$$\widehat j$$
D
$$\widehat k$$ $$-$$ $${1 \over 2}$$$$\widehat j$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12