1
JEE Advanced 2025 Paper 1 Online
Numerical
+4
-0
Change Language

For any two points $M$ and $N$ in the $XY$-plane, let $\overrightarrow{MN}$ denote the vector from $M$ to $N$, and $\vec{0}$ denote the zero vector. Let $P, Q$ and $R$ be three distinct points in the $XY$-plane. Let $S$ be a point inside the triangle $\triangle PQR$ such that

$$\overrightarrow{SP} + 5\; \overrightarrow{SQ} + 6\; \overrightarrow{SR} = \vec{0}.$$

Let $E$ and $F$ be the mid-points of the sides $PR$ and $QR$, respectively. Then the value of

$\frac{\text { length of the line segment } E F}{\text { length of the line segment } E S}$

is ________________.

Your input ____
2
JEE Advanced 2024 Paper 2 Online
Numerical
+4
-0
Change Language

Let $\vec{p}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{q}=\hat{i}-\hat{j}+\hat{k}$. If for some real numbers $\alpha, \beta$, and $\gamma$, we have

$$ 15 \hat{i}+10 \hat{j}+6 \hat{k}=\alpha(2 \vec{p}+\vec{q})+\beta(\vec{p}-2 \vec{q})+\gamma(\vec{p} \times \vec{q}), $$

then the value of $\gamma$ is ________.

Your input ____
3
JEE Advanced 2024 Paper 1 Online
Numerical
+4
-0
Change Language

Let $\overrightarrow{O P}=\frac{\alpha-1}{\alpha} \hat{i}+\hat{j}+\hat{k}, \overrightarrow{O Q}=\hat{i}+\frac{\beta-1}{\beta} \hat{j}+\hat{k}$ and $\overrightarrow{O R}=\hat{i}+\hat{j}+\frac{1}{2} \hat{k}$ be three vectors, where $\alpha, \beta \in \mathbb{R}-\{0\}$ and $O$ denotes the origin. If $(\overrightarrow{O P} \times \overrightarrow{O Q}) \cdot \overrightarrow{O R}=0$ and the point $(\alpha, \beta, 2)$ lies on the plane $3 x+3 y-z+l=0$, then the value of $l$ is ____________.

Your input ____
4
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Change Language
Let $P$ be the plane $\sqrt{3} x+2 y+3 z=16$ and let $S=\left\{\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}: \alpha^2+\beta^2+\gamma^2=1\right.$ and the distance of $(\alpha, \beta, \gamma)$ from the plane $P$ is $\left.\frac{7}{2}\right\}$. Let $\vec{u}, \vec{v}$ and $\vec{w}$ be three distinct vectors in $S$ such that $|\vec{u}-\vec{v}|=|\vec{v}-\vec{w}|=|\vec{w}-\vec{u}|$. Let $V$ be the volume of the parallelepiped determined by vectors $\vec{u}, \vec{v}$ and $\vec{w}$. Then the value of $\frac{80}{\sqrt{3}} V$ is :
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12