1
JEE Advanced 2021 Paper 1 Online
Numerical
+4
-0
Change Language
Let $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$ be vectors in three-dimensional space, where $$\overrightarrow u $$ and $$\overrightarrow v $$ are unit vectors which are not perpendicular to each other and $$\overrightarrow u $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow v $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow w $$ . $$\overrightarrow w $$ = 4

If the volume of the paralleopiped, whose adjacent sides are represented by the vectors, $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$, is $$\sqrt 2 $$, then the value of $$\left| {3\overrightarrow u + 5\overrightarrow v } \right|$$ is ___________.
Your input ____
2
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
Change Language
Let $$\overrightarrow a = 2\widehat i + \widehat j - \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$ be two vectors. Consider a vector c = $$\alpha $$$$\overrightarrow a$$ + $$\beta $$$$\overrightarrow b$$, $$\alpha $$, $$\beta $$ $$ \in $$ R. If the projection of $$\overrightarrow c$$ on the vector ($$\overrightarrow a$$ + $$\overrightarrow b$$) is $$3\sqrt 2 $$, then the
minimum value of ($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$ equals ................
Your input ____
3
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
Change Language
Let a and b be two unit vectors such that a . b = 0. For some x, y$$ \in $$R, let $$\overrightarrow c = x\overrightarrow a + y\overrightarrow b + \overrightarrow a \times \overrightarrow b $$. If | $$\overrightarrow c $$| = 2 and the vector c is inclined at the same angle $$\alpha $$ to both a and b, then the value of $$8{\cos ^2}\alpha $$ is ..............
Your input ____
4
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that $$\overrightarrow p ,\overrightarrow q $$ and $$\overrightarrow r $$ are three non-coplanar vectors in $${R^3}$$. Let the components of a vector $$\overrightarrow s $$ along $$\overrightarrow p ,$$ $$\overrightarrow q $$ and $$\overrightarrow r $$ be $$4, 3$$ and $$5,$$ respectively. If the components of this vector $$\overrightarrow s $$ along $$\left( { - \overrightarrow p + \overrightarrow q + \overrightarrow r } \right),\left( {\overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ and $$\left( { - \overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ are $$x, y$$ and $$z,$$ respectively, then the value of $$2x+y+z$$ is
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12