NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2021 Paper 1 Online

Numerical
Let $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$ be vectors in three-dimensional space, where $$\overrightarrow u $$ and $$\overrightarrow v $$ are unit vectors which are not perpendicular to each other and $$\overrightarrow u $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow v $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow w $$ . $$\overrightarrow w $$ = 4

If the volume of the paralleopiped, whose adjacent sides are represented by the vectors, $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$, is $$\sqrt 2 $$, then the value of $$\left| {3\overrightarrow u + 5\overrightarrow v } \right|$$ is ___________.
Your Input ________

Answer

Correct Answer is 7
2

JEE Advanced 2021 Paper 1 Online

Numerical
Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be real numbers such that the system of linear equations

x + 2y + 3z = $$\alpha$$

4x + 5y + 6z = $$\beta$$

7x + 8y + 9z = $$\beta$$ $$-$$ 1

is consistent. Let | M | represent the determinant of the matrix

$$M = \left[ {\matrix{ \alpha & \beta & \gamma \cr \beta & 1 & 0 \cr { - 1} & 0 & 1 \cr } } \right]$$

Let P be the plane containing all those ($$\alpha$$, $$\beta$$, $$\gamma$$) for which the above system of linear equations is consistent, and D be the square of the distance of the point (0, 1, 0) from the plane P.

The value of D is _________.
Your Input ________

Answer

Correct Answer is 1.5

Explanation

$$7x + 8y + 9z - (\gamma - 1) = A(4x + 5y + 6z - \beta ) + B(x + 2y + 3z - \alpha )$$

On equating the coefficients,

4A + B = 7 .... (i)

5A + 2B = 8 .... (ii)

and $$-$$ ($$\gamma$$ $$-$$ 1) = $$-$$ A$$\beta$$ $$-$$ $$\alpha$$B ..... (iii)

On solving Eqs. (i) and (ii), we get A = 2 and B = $$-$$1

From Eq. (iii), we get

$$-$$ $$\gamma$$ + 1 = $$-$$ 2$$\beta$$ $$-$$ $$\alpha$$($$-$$1)

$$\Rightarrow$$ $$\alpha$$ $$-$$ 2$$\beta$$ + $$\gamma$$ = 1 ..... (iv)

Now, determinant of

$$M = \left| M \right| = \left| {\matrix{ \alpha & 2 & \gamma \cr \beta & 1 & 0 \cr { - 1} & 0 & 1 \cr } } \right| = \alpha - 2\beta + \gamma = 1$$ [from Eq. (iv)]

Equation of plane P is given by $$x - 2y + z = 1$$

Hence, perpendicular distance of the point (0, 1, 0) from the plane

$$P = {{\left| {0 - 2 \times 1 + 0 - 1} \right|} \over {\sqrt {{1^2} + {{( - 2)}^2} + {1^2}} }} = {{\left| 3 \right|} \over {\sqrt 6 }}$$

$$ \Rightarrow D = {\left( {{{\left| 3 \right|} \over {\sqrt 6 }}} \right)^2} = {9 \over 6} = 1.5$$
3

JEE Advanced 2021 Paper 1 Online

Numerical
Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be real numbers such that the system of linear equations

x + 2y + 3z = $$\alpha$$

4x + 5y + 6z = $$\beta$$

7x + 8y + 9z = $$\beta$$ $$-$$ 1

is consistent. Let | M | represent the determinant of the matrix

$$M = \left[ {\matrix{ \alpha & \beta & \gamma \cr \beta & 1 & 0 \cr { - 1} & 0 & 1 \cr } } \right]$$

Let P be the plane containing all those ($$\alpha$$, $$\beta$$, $$\gamma$$) for which the above system of linear equations is consistent, and D be the square of the distance of the point (0, 1, 0) from the plane P.

The value of | M | is _________.
Your Input ________

Answer

Correct Answer is 1

Explanation

$$7x + 8y + 9z - (\gamma - 1) = A(4x + 5y + 6z - \beta ) + B(x + 2y + 3z - \alpha )$$

On equating the coefficients,

4A + B = 7 .... (i)

5A + 2B = 8 .... (ii)

and $$-$$ ($$\gamma$$ $$-$$ 1) = $$-$$ A$$\beta$$ $$-$$ $$\alpha$$B ..... (iii)

On solving Eqs. (i) and (ii), we get A = 2 and B = $$-$$1

From Eq. (iii), we get

$$-$$ $$\gamma$$ + 1 = $$-$$ 2$$\beta$$ $$-$$ $$\alpha$$($$-$$1)

$$\Rightarrow$$ $$\alpha$$ $$-$$ 2$$\beta$$ + $$\gamma$$ = 1 ..... (iv)

Now, determinant of

$$M = \left| M \right| = \left| {\matrix{ \alpha & 2 & \gamma \cr \beta & 1 & 0 \cr { - 1} & 0 & 1 \cr } } \right| = \alpha - 2\beta + \gamma = 1$$ [from Eq. (iv)]
4

JEE Advanced 2019 Paper 2 Offline

Numerical
Let $$\overrightarrow a = 2\widehat i + \widehat j - \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$ be two vectors. Consider a vector c = $$\alpha $$$$\overrightarrow a$$ + $$\beta $$$$\overrightarrow b$$, $$\alpha $$, $$\beta $$ $$ \in $$ R. If the projection of $$\overrightarrow c$$ on the vector ($$\overrightarrow a$$ + $$\overrightarrow b$$) is $$3\sqrt 2 $$, then the
minimum value of ($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$ equals ................
Your Input ________

Answer

Correct Answer is 18

Explanation

Given vectors $$\overrightarrow a $$$$ = 2\widehat i + \widehat j - \widehat k$$

and $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$

So, $$\overrightarrow a + \overrightarrow b = 3\widehat i + 3\widehat j \Rightarrow |\overrightarrow a + \overrightarrow b| = 3\sqrt 2 $$

Since, it is given that projection of $$\overrightarrow c $$ = $$\alpha $$a + $$\beta $$b on the vector ($$\overrightarrow a $$ + $$\overrightarrow b $$) is $$3\sqrt 2 $$, then

$${{(\overrightarrow a + \overrightarrow b ).\overrightarrow c } \over {|\overrightarrow a + \overrightarrow b|}} = 3\sqrt 2 $$

$$ \Rightarrow (\overrightarrow a + \overrightarrow b).(\alpha \overrightarrow a + \beta \overrightarrow b) = 18$$

$$ \Rightarrow \alpha (\overrightarrow a.\overrightarrow a) + \beta (\overrightarrow a.\overrightarrow b) + \alpha (\overrightarrow b.\overrightarrow a) + \beta (\overrightarrow a.\overrightarrow b) = 18$$

$$ \Rightarrow 6\alpha + 3\beta + 3\alpha + 6\beta = 18$$

$$ \Rightarrow 9\alpha + 9\beta = 18 \Rightarrow (\alpha + \beta ) = 2$$ .....(i)

Now, for minimum value of

($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$

$$ = (\alpha \overrightarrow a + \beta \overrightarrow b - (\overrightarrow a \times \overrightarrow b)).(\alpha \overrightarrow a + \beta \overrightarrow b)$$

$$ = {\alpha ^2}(\overrightarrow a.\overrightarrow a) + \alpha \beta (\overrightarrow a.\overrightarrow b) + \alpha \beta (\overrightarrow a.\overrightarrow b) + {\beta ^2}(\overrightarrow b.\overrightarrow b)$$

[$$ \because $$ ($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$) . $$\overrightarrow a$$ = 0 = ($$\overrightarrow a $$$$ \times $$ $$\overrightarrow b$$) . $$\overrightarrow b$$]

$$6{\alpha ^2} + 6\alpha \beta + 6{\beta ^2} = 6({\alpha ^2} + {\beta ^2} + \alpha \beta )$$

$$ = 6\,[{(\alpha + \beta )^2} - \alpha \beta ] = 6\,[4 - \alpha \beta ]$$

$$ = 6\,[4 - \alpha (2 - \alpha )]$$

$$ = 6\,[4 - 2\alpha + {\alpha ^2}]$$

Let f ( $$\alpha $$) = $$4 - 2\alpha + {\alpha ^2}$$

f′( $$\alpha $$) = –2 + 2$$\alpha $$

At maximum and minimum f′( $$\alpha $$) = 0

$$ \Rightarrow $$ –2 + 2$$\alpha $$ $$ \Rightarrow $$ $$\alpha $$ = 1

f′'( $$\alpha $$) = 2 (+ve)

Therefore, minimum value of $$4 - 2\alpha + {\alpha ^2}$$ is (4 – 2 + 1) = 3.

$$ \therefore $$ The minimum value of

$$6(4 - 2\alpha + {\alpha^2}) = 6(3) = 18$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12