1
IIT-JEE 2006
Subjective
+6
-0
Match the following

Column $$I$$

(A) $$\sum\limits_{i = 1}^\infty {{{\tan }^{ - 1}}\left( {{1 \over {2{i^2}}}} \right) = t,} $$ then tan $$t=$$

(B) Sides $$a, b, c$$ of a triangle $$ABC$$ are in $$AP$$ and
$$\cos {\theta _1} = {a \over {b + c}},\,\cos {\theta _2} = {b \over {a + c}},\cos {\theta _3} = {c \over {a + b}},$$
then $${\tan ^2}\left( {{{{\theta _1}} \over 2}} \right) + {\tan ^2}\left( {{{{\theta _3}} \over 2}} \right) = $$

(C) A line is perpendicular to $$x + 2y + 2z = 0$$ and
passes through $$(0, 1, 0)$$. The perpendicular distance of this line from the origin is

Column $$II$$

(p) $$1$$

(q) $${{\sqrt 5 } \over 3}$$

(r) $${2 \over 3}$$

2
IIT-JEE 2002
Subjective
+5
-0
Prove that $$\cos \,ta{n^{ - 1}}\sin \,{\cot ^{ - 1}}x = \sqrt {{{{x^2} + 1} \over {{x^2} + 2}}} $$.
3
IIT-JEE 1983
Subjective
+2
-0
Find all the solution of $$4$$ $${\cos ^2}x\sin x - 2{\sin ^2}x = 3\sin x$$
4
IIT-JEE 1981
Subjective
+2
-0
Find the value of : $$\cos \left( {2{{\cos }^{ - 1}}x + {{\sin }^{ - 1}}x} \right)$$ at $$x = {1 \over 5}$$, where
$$0 \le {\cos ^{ - 1}}x \le \pi $$ and $$ - \pi /2 \le {\sin ^{ - 1}}x \le \pi /2$$.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12