NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2007

Subjective
Let $$(x, y)$$ be such that $${\sin ^{ - 1}}\left( {ax} \right) + {\cos ^{ - 1}}\left( y \right) + {\cos ^{ - 1}}\left( {bxy} \right) = {\pi \over 2}$$.

Column $$I$$
(A) If $$a=1$$ and $$b=0,$$ then $$(x, y)$$
(B) If $$a=1$$ and $$b=1,$$ then $$(x, y)$$
(C) If $$a=1$$ and $$b=2,$$ then $$(x, y)$$
(D) If $$a=2$$ and $$b=2,$$ then $$(x, y)$$

Column $$II$$
(p) lies on the circle $${x^2} + {y^2} = 1$$
(q) lies on $$\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
(r) lies on $$y=x$$
(s) lies on $$\left( {4{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$

Answer

$$\left( A \right) - \left( p \right),\left( B \right) - \left( q \right),\left( C \right) - \left( p \right),\left( D \right) - \left( s \right)$$
2

IIT-JEE 2006

Subjective
Match the following

Column $$I$$

(A) $$\sum\limits_{i = 1}^\infty {{{\tan }^{ - 1}}\left( {{1 \over {2{i^2}}}} \right) = t,} $$ then tan $$t=$$

(B) Sides $$a, b, c$$ of a triangle $$ABC$$ are in $$AP$$ and
$$\cos {\theta _1} = {a \over {b + c}},\,\cos {\theta _2} = {b \over {a + c}},\cos {\theta _3} = {c \over {a + b}},$$
then $${\tan ^2}\left( {{{{\theta _1}} \over 2}} \right) + {\tan ^2}\left( {{{{\theta _3}} \over 2}} \right) = $$

(C) A line is perpendicular to $$x + 2y + 2z = 0$$ and
passes through $$(0, 1, 0)$$. The perpendicular distance of this line from the origin is

Column $$II$$

(p) $$1$$

(q) $${{\sqrt 5 } \over 3}$$

(r) $${2 \over 3}$$

Answer

$$\left( A \right) - \left( p \right),\left( B \right) - \left( r \right),\left( C \right) - \left( q \right)$$
3

IIT-JEE 2002

Subjective
Prove that $$\cos \,ta{n^{ - 1}}\sin \,{\cot ^{ - 1}}x = \sqrt {{{{x^2} + 1} \over {{x^2} + 2}}} $$.

Answer

Solve it.
4

IIT-JEE 1983

Subjective
Find all the solution of $$4$$ $${\cos ^2}x\sin x - 2{\sin ^2}x = 3\sin x$$

Answer

$$x = n\pi ,\,n\pi + {\left( { - 1} \right)^n}{\pi \over {10}},n\pi + {\left( { - 1} \right)^n}\left( {{{ - 3\pi } \over {10}}} \right)$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12