1
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let T be the line passing through the points P($$-$$2, 7) and Q(2, $$-$$5). Let F1 be the set of al pairs of circles (S1, S2) such that T is tangent to S1 at P and tangent to S2 at Q, and also such that S1 and S2 touch each other at a point, say M. Let E1 be the set representing the locus of M as the pair (S1, S2) varies in F1. Let the set of all straight line segments joining a pair of distinct points of E1 and passing through the point R(1, 1) be F2. Let E2 be the set of the mid-points of the line segments in the set F2. Then, which of the following statement(s) is (are) TRUE?
A
The point ($$-$$2, 7) lies in E1
B
The point $$\left( {{4 \over 5},{7 \over 5}} \right)$$ does not lie in E2
C
The point $$\left( {{1 \over 2},1} \right)$$ lies in E2
D
The point $$\left( {0,{3 \over 2}} \right)$$ does not lie in E1
2
JEE Advanced 2017 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
If $$2x - y + 1 = 0$$ is a tangent to the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {16}} = 1$$ then which of the following CANNOT be sides of a right angled triangle?
A
a, 4, 1
B
2a, 4, 1
C
a, 4, 2
D
2a, 8, 1
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Consider the hyperbola $$H:{x^2} - {y^2} = 1$$ and a circle $$S$$ with center $$N\left( {{x_2},0} \right)$$. Suppose that $$H$$ and $$S$$ touch each other at a point $$P\left( {{x_1},{y_1}} \right)$$ with $${{x_1} > 1}$$ and $${{y_1} > 0}$$. The common tangent to $$H$$ and $$S$$ at $$P$$ intersects the $$x$$-axis at point $$M$$. If $$(l, m)$$ is the centroid of the triangle $$PMN$$, then the correct expressions(s) is(are)
A
$${{dl} \over {d{x_1}}} = 1 - {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
B
$${{dm} \over {d{x_1}}} = {{{x_1}} \over {3\left( {\sqrt {x_1^2 - 1} } \right)}}$$ for $${x_1} > 1$$
C
$${{dl} \over {d{x_1}}} = 1 + {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
D
$${{dm} \over {d{y_1}}} = {1 \over 3}$$ for $${y_1} > 0$$
4
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Tangents are drawn to the hyperbola $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1,$$ parallel to the straight line $$2x - y = 1,$$ The points of contact of the tangents on the hyperbola are
A
$$\left( {{9 \over {2\sqrt 2 }},{1 \over {\sqrt 2 }}} \right)$$
B
$$\left( -{{9 \over {2\sqrt 2 }},-{1 \over {\sqrt 2 }}} \right)$$
C
$$\left( {3\sqrt 3 , - 2\sqrt 2 } \right)$$
D
$$\left( -{3\sqrt 3 , 2\sqrt 2 } \right)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12