1
JEE Advanced 2017 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
If $$2x - y + 1 = 0$$ is a tangent to the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {16}} = 1$$ then which of the following CANNOT be sides of a right angled triangle?
A
a, 4, 1
B
2a, 4, 1
C
a, 4, 2
D
2a, 8, 1
2
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Consider the hyperbola $$H:{x^2} - {y^2} = 1$$ and a circle $$S$$ with center $$N\left( {{x_2},0} \right)$$. Suppose that $$H$$ and $$S$$ touch each other at a point $$P\left( {{x_1},{y_1}} \right)$$ with $${{x_1} > 1}$$ and $${{y_1} > 0}$$. The common tangent to $$H$$ and $$S$$ at $$P$$ intersects the $$x$$-axis at point $$M$$. If $$(l, m)$$ is the centroid of the triangle $$PMN$$, then the correct expressions(s) is(are)
A
$${{dl} \over {d{x_1}}} = 1 - {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
B
$${{dm} \over {d{x_1}}} = {{{x_1}} \over {3\left( {\sqrt {x_1^2 - 1} } \right)}}$$ for $${x_1} > 1$$
C
$${{dl} \over {d{x_1}}} = 1 + {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
D
$${{dm} \over {d{y_1}}} = {1 \over 3}$$ for $${y_1} > 0$$
3
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Tangents are drawn to the hyperbola $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1,$$ parallel to the straight line $$2x - y = 1,$$ The points of contact of the tangents on the hyperbola are
A
$$\left( {{9 \over {2\sqrt 2 }},{1 \over {\sqrt 2 }}} \right)$$
B
$$\left( -{{9 \over {2\sqrt 2 }},-{1 \over {\sqrt 2 }}} \right)$$
C
$$\left( {3\sqrt 3 , - 2\sqrt 2 } \right)$$
D
$$\left( -{3\sqrt 3 , 2\sqrt 2 } \right)$$
4
IIT-JEE 2011 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let the eccentricity of the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$ be reciprocal to that of the ellipse $${x^2} + 4{y^2} = 4$$. If the hyperbola passes through a focus of the ellipse, then
A
the equation of the hyperbola is $${{{x^2}} \over 3} - {{{y^2}} \over 2} = 1$$
B
a focus of the hyperbola is $$(2, 0)$$
C
theeccentricity of the hyperbola is $$\sqrt {{5 \over 3}} $$
D
The equation of the hyperbola is $${x^2} - 3{y^2} = 3$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12