1
IIT-JEE 1994
MCQ (Single Correct Answer)
+2
-0.5
Let $$n$$ be a positive integer such that $$\sin {\pi \over {2n}} + \cos {\pi \over {2n}} = {{\sqrt n } \over 2}.$$ Then
A
$$6 \le n \le 8$$
B
$$4 < n \le 8$$
C
$$4 \le n \le 8$$
D
$$4 < n < 8$$
2
IIT-JEE 1994
MCQ (Single Correct Answer)
+2
-0.5
Let $$0 < x < {\pi \over 4}$$ then $$\left( {\sec 2x - \tan 2x} \right)$$ equals
A
$$\tan \left[ {x - {\pi \over 4}} \right]$$
B
$$\tan \left[ {{\pi \over 4} - x} \right]$$
C
$$\tan \left[ {x + {\pi \over 4}} \right]$$
D
$${\tan ^2}\left[ {x + {\pi \over 4}} \right]$$
3
IIT-JEE 1993
MCQ (Single Correct Answer)
+1
-0.25
Number of solutions of the equation $$\tan x + \sec x = 2\cos x\,$$ lying in the interval $$\left[ {0,2\pi } \right]$$ is:
A
0
B
1
C
2
D
3
4
IIT-JEE 1992
MCQ (Single Correct Answer)
+2
-0.5
In this questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book.

$${{\sin \,3\alpha } \over {\cos 2\alpha }}$$ is

Column $${\rm I}$$

(A) positive

(B) negative

Column $${\rm I}$$$${\rm I}$$

(p) $$\left( {{{13\pi } \over {48}},{{14\pi } \over {48}}} \right)$$

(q) $$\left( {{{14\pi } \over {48}},\,{{18\pi } \over {48}}} \right)$$

(r) $$\left( {{{18\pi } \over {48}},\,{{23\pi } \over {48}}} \right)$$

(s) $$\left( {0,\,{\pi \over 2}} \right)$$

Options:-

A
$$\left( A \right) - r,\,\left( B \right) - q$$
B
$$\left( A \right) - r,\,\left( B \right) - p$$
C
$$\left( A \right) - s,\,\left( B \right) - r$$
D
$$\left( A \right) - p,\,\left( B \right) - q$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12