NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2019 Paper 2 Offline

MCQ (Single Correct Answer)
Let f(x) = sin($$\pi $$ cos x) and g(x) = cos(2$$\pi $$ sin x) be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order :

X = {x : f(x) = 0}, Y = {x : f'(x) = 0}

Z = {x : g(x) = 0}, W = {x : g'(x) = 0}

List - I contains the sets X, Y, Z and W. List - II contains some information regarding these sets.

A
(II), (Q), (T)
B
(II), (R), (S)
C
(I), (P), (R)
D
(I), (Q), (U)

Explanation

For, X = {x : f(x) = 0}, x > 0

Now, f(x) = 0

$$ \Rightarrow $$ sin($$\pi $$ cos x) = 0, x > 0

$$ \Rightarrow $$ $$\pi $$ cos x = n$$\pi $$, n $$ \in $$ Integer.

$$ \Rightarrow $$ cos x = n

$$ \Rightarrow $$ cos x = $$-$$1, 0, 1

{$$ \because $$ cos x $$ \in $$[$$-$$1, 1]}

When cos x = ± 1$$ \Rightarrow $$ x = n$$\pi $$

When cos x = 0 $$ \Rightarrow $$ x = (2n + 1)$${{\pi \over 2}}$$

Hence, (i) $$ \to $$ (P), (Q)

For, Y = {x : f'(x) = 0}, x > 0

Now, f'(x) = 0

$$ \Rightarrow $$ $$-$$$$\pi $$ sin x cos($$\pi $$ cos x) = 0

$$ \Rightarrow $$ either sin x = 0 $$ \Rightarrow $$ x = n$$\pi $$, n is an integer,

or cos($$\pi $$ cos x) = 0

$$ \Rightarrow $$ $$\pi $$ cos x = (2n + 1)$${{\pi \over 2}}$$, n is an integer

$$ \Rightarrow $$ cos x = $${{{2n + 1} \over 2}}$$

$$ \Rightarrow $$ $$\cos x = \pm {1 \over 2}$$ {$$ \because $$ cos x $$ \in $$[$$-$$1, 1]}

$$ \Rightarrow $$ x = $$2n\pi \pm {\pi \over 3}$$ or $$2n\pi \pm {{2\pi } \over 3}$$, n is an integer.

So, (ii) $$ \to $$ (Q), (T)

Hence, option (a) is correct.
2

JEE Advanced 2019 Paper 2 Offline

MCQ (Single Correct Answer)
Let f(x) = sin($$\pi $$ cos x) and g(x) = cos(2$$\pi $$ sin x) be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order:

X = {x : f(x) = 0}, Y = {x : f'(x) = 0}

Z = {x : g(x) = 0}, W = {x : g'(x) = 0}

List - I contains the sets X, Y, Z and W. List - II contains some information regarding these sets.



Which of the following is the only CORRECT combination?
A
(IV), (P), (R), (S)
B
(III), (P), (Q), (U)
C
(III), (R), (U)
D
(IV), (Q), (T)

Explanation

For Z = {x : g(x) = 0}, x > 0

$$ \because $$ g(x) = cos(2$$\pi $$ sin x) = 0

$$ \Rightarrow $$ $$2\pi \sin x = (2n + 1){\pi \over 2},\,n \in $$ Integer

$$ \Rightarrow $$ $$\sin x = - {3 \over 4}, - {1 \over 4},{1 \over 4},{3 \over 4}$$ [$$ \because $$ sin x $$ \in $$ [$$-$$1, 1]]

here values of sin x, $$ - {3 \over 4}, - {1 \over 4},{1 \over 4},{3 \over 4}$$ are in an A.P. but corresponding values of x are not in an AP so, (iii) $$ \to $$ R.

For W = {x : g'(x) = 0}, x > 0

So, g'(x) = $$-$$2 $$\pi $$ cos x sin(2$$\pi $$ sin x) = 0

$$ \Rightarrow $$ either cos x = 0 or sin(2$$\pi $$ sin x) = 0

$$ \Rightarrow $$ either $$x = (2n + 1){\pi \over 2}$$ or 2$$\pi $$ sin x = n$$\pi $$, n$$ \in $$ Integers.

$$ \because $$ $$2\pi \sin x = nx$$

$$ \Rightarrow $$ $$\sin x = {n \over 2} = - 1, - {1 \over 2},0,{1 \over 2},1$$ {$$ \because $$ sin x $$ \in $$[$$-$$1, 1)}

$$ \because $$ $$x = n\pi ,\,(2n + 1){\pi \over 2}$$ or $$x = n\pi + {( - 1)^n}\left( { \pm {\pi \over 6}} \right)$$

$$ \Rightarrow $$ (iv) $$ \to $$ P, R, S

Hence, option (a) is correct.
3

JEE Advanced 2016 Paper 2 Offline

MCQ (Single Correct Answer)
The value of

$$\sum\limits_{k = 1}^{13} {{1 \over {\sin \left( {{\pi \over 4} + {{\left( {k - 1} \right)\pi } \over 6}} \right)\sin \left( {{\pi \over 4} + {{k\pi } \over 6}} \right)}}} $$ is equal to
A
$$3 - \sqrt 3 $$
B
$$2\left( {3 - \sqrt 3 } \right)$$
C
$$2\left( {\sqrt 3 - 1} \right)\,\,\,$$
D
$$2\left( {2 - \sqrt 3 } \right)$$

Explanation

It is given that,

$$\sum\limits_{k = 1}^{13} {{1 \over {\sin \left( {{\pi \over 4} + {{(k - 1)\pi } \over 6}} \right)\sin \left( {{\pi \over 4} + {{k\pi } \over 6}} \right)}}} $$

Let $$\alpha = {\pi \over 4}$$ and $$\beta = {\pi \over 6}$$. Therefore,

$$\sum\limits_{k = 1}^{13} {{1 \over {\sin (\alpha + k\beta )sin(\alpha + (k - 1)\beta )}}} $$

$$ = {1 \over {\sin \beta }}\sum\limits_{k = 1}^{13} {{{\sin ((\alpha + k\beta ) - (\alpha + (k - 1)\beta ))} \over {\sin (\alpha + k\beta )\sin (\alpha + (k - 1)\beta )}}} $$

$$ = {1 \over {\sin \beta }}\sum\limits_{k = 1}^{13} {(\cot (\alpha + (k - 1)\beta ) - \cot (\alpha + k\beta ))} $$

$$ = {1 \over {\sin \beta }}\{ [\cot (\alpha ) - \cot (\alpha + \beta )] + [\cot (\alpha + \beta ) - \cot (\alpha + 2\beta )] + ...... + [\cot (\alpha + 12\beta ) - \cot (\alpha + 13\beta )]\} $$

$$ = {1 \over {\sin \beta }}(\cot \alpha - \cot (\alpha + 13\beta ))$$

$$ = {1 \over {\sin (\pi /6)}}\left( {\cot {\pi \over 4} - \cot \left( {{\pi \over 4} + {{13\pi } \over 6}} \right)} \right)$$

$$ = 2(1 - 2 + \sqrt 3 ) = 2(\sqrt 3 - 1)$$

4

JEE Advanced 2016 Paper 1 Offline

MCQ (Single Correct Answer)
Let $$S = \left\{ {x \in \left( { - \pi ,\pi } \right):x \ne 0, \pm {\pi \over 2}} \right\}.$$ The sum of all distinct solutions of the equation $$\sqrt 3 \,\sec x + \cos ec\,x + 2\left( {\tan x - \cot x} \right) = 0$$ in the set S is equal to
A
$$ - {{7\pi } \over 9}$$
B
$$ - {{2\pi } \over 9}$$
C
0
D
$${{5\pi } \over 9}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12