1

JEE Advanced 2013 Paper 1 Offline

MCQ (More than One Correct Answer)
Let $$f\left( x \right) = x\sin \,\pi x,\,x > 0.$$ Then for all natural numbers $$n,\,f'\left( x \right)$$ vanishes at
A
A unique point in the interval $$\left( {n,\,n + {1 \over 2}} \right)$$
B
A unique point in the interval $$\left( {n + {1 \over 2},n + 1} \right)$$
C
A unique point in the interval $$\left( {n,\,n + 1} \right)$$
D
Two points in the interval $$\left( {n,\,n + 1} \right)$$
2

IIT-JEE 2012 Paper 1 Offline

MCQ (More than One Correct Answer)
Let $$\theta ,\,\varphi \, \in \,\left[ {0,2\pi } \right]$$ be such that
$$2\cos \theta \left( {1 - \sin \,\varphi } \right) = {\sin ^2}\theta \,\,\left( {\tan {\theta \over 2} + \cot {\theta \over 2}} \right)\cos \varphi - 1,\,\tan \left( {2\pi - \theta } \right) > 0$$ and $$ - 1 < \sin \theta \, < - {{\sqrt 3 } \over 2},$$

then $$\varphi $$ cannot satisfy

A
$$0 < \varphi < {\pi \over 2}$$
B
$${\pi \over 2} < \varphi < {{4\pi } \over 3}$$
C
$${{4\pi } \over 3} < \varphi < {{3\pi } \over 2}$$
D
$${{3\pi } \over 2} < \varphi < 2\pi $$
3

IIT-JEE 2009

MCQ (More than One Correct Answer)
If $${{{{\sin }^4}x} \over 2} + {{{{\cos }^4}x} \over 3} = {1 \over 5},$$ then
A
$${\tan ^2}x = {2 \over 3}$$
B
$${{{{\sin }^8}x} \over 8} + {{{{\cos }^8}x} \over {27}} = {1 \over {125}}$$
C
$${\tan ^2}x = {1 \over 3}$$
D
$${{{{\sin }^8}x} \over 8} + {{{{\cos }^8}x} \over {27}} = {2 \over {125}}$$
4

IIT-JEE 2009

MCQ (More than One Correct Answer)
For $$0 < \theta < {\pi \over 2},$$ the solution (s) of $$$\sum\limits_{m = 1}^6 {\cos ec\,\left( {\theta + {{\left( {m - 1} \right)\pi } \over 4}} \right)\,\cos ec\,\left( {\theta + {{m\pi } \over 4}} \right) = 4\sqrt 2 } $$$ is (are)
A
$$\,{\pi \over 4}$$
B
$$\,{\pi \over 6 }$$
C
$$\,{\pi \over 12}$$
D
$$\,{5\pi \over 12}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12