1
JEE Advanced 2013 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$f\left( x \right) = x\sin \,\pi x,\,x > 0.$$ Then for all natural numbers $$n,\,f'\left( x \right)$$ vanishes at
A
A unique point in the interval $$\left( {n,\,n + {1 \over 2}} \right)$$
B
A unique point in the interval $$\left( {n + {1 \over 2},n + 1} \right)$$
C
A unique point in the interval $$\left( {n,\,n + 1} \right)$$
D
Two points in the interval $$\left( {n,\,n + 1} \right)$$
2
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$\theta ,\,\varphi \, \in \,\left[ {0,2\pi } \right]$$ be such that
$$2\cos \theta \left( {1 - \sin \,\varphi } \right) = {\sin ^2}\theta \,\,\left( {\tan {\theta \over 2} + \cot {\theta \over 2}} \right)\cos \varphi - 1,\,\tan \left( {2\pi - \theta } \right) > 0$$ and $$ - 1 < \sin \theta \, < - {{\sqrt 3 } \over 2},$$

then $$\varphi $$ cannot satisfy

A
$$0 < \varphi < {\pi \over 2}$$
B
$${\pi \over 2} < \varphi < {{4\pi } \over 3}$$
C
$${{4\pi } \over 3} < \varphi < {{3\pi } \over 2}$$
D
$${{3\pi } \over 2} < \varphi < 2\pi $$
3
IIT-JEE 2009 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
For $$0 < \theta < {\pi \over 2},$$ the solution (s) of $$$\sum\limits_{m = 1}^6 {\cos ec\,\left( {\theta + {{\left( {m - 1} \right)\pi } \over 4}} \right)\,\cos ec\,\left( {\theta + {{m\pi } \over 4}} \right) = 4\sqrt 2 } $$$ is (are)
A
$$\,{\pi \over 4}$$
B
$$\,{\pi \over 6 }$$
C
$$\,{\pi \over 12}$$
D
$$\,{5\pi \over 12}$$
4
IIT-JEE 2009 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
If $${{{{\sin }^4}x} \over 2} + {{{{\cos }^4}x} \over 3} = {1 \over 5},$$ then
A
$${\tan ^2}x = {2 \over 3}$$
B
$${{{{\sin }^8}x} \over 8} + {{{{\cos }^8}x} \over {27}} = {1 \over {125}}$$
C
$${\tan ^2}x = {1 \over 3}$$
D
$${{{{\sin }^8}x} \over 8} + {{{{\cos }^8}x} \over {27}} = {2 \over {125}}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12