1
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
In a $$\Delta $$PQR = 30$$^\circ $$ and the sides PQ and QR have lengths 10$$\sqrt 3 $$ and 10, respectively. Then, which of the following statement(s) is(are) TRUE?
A
$$\angle QPR = 45^\circ $$
B
The area of the $$\Delta PQR$$ is $$25\sqrt 3 $$ and $$\angle QRP = 120^\circ $$
C
The radius of the incircle of the $$\Delta PQR$$ is $$10\sqrt 3 $$ $$-$$ 15
D
The area of the circumcircle of the $$\Delta PQR$$ is 100$$\pi $$
2
JEE Advanced 2017 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$\alpha $$ and $$\beta $$ be non zero real numbers such that $$2(\cos \beta - \cos \alpha ) + \cos \alpha \cos \beta = 1$$. Then which of the following is/are true?
A
$$\sqrt 3 \tan \left( {{\alpha \over 2}} \right) - \tan \left( {{\beta \over 2}} \right) = 2$$
B
$$\tan \left( {{\alpha \over 2}} \right) - \sqrt 3 \tan \left( {{\beta \over 2}} \right) = 0$$
C
$$\tan \left( {{\alpha \over 2}} \right) + \sqrt 3 \tan \left( {{\beta \over 2}} \right) = 0$$
D
$$\sqrt 3 \tan \left( {{\alpha \over 2}} \right) + \tan \left( {{\beta \over 2}} \right) = 2$$
3
JEE Advanced 2013 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$f\left( x \right) = x\sin \,\pi x,\,x > 0.$$ Then for all natural numbers $$n,\,f'\left( x \right)$$ vanishes at
A
A unique point in the interval $$\left( {n,\,n + {1 \over 2}} \right)$$
B
A unique point in the interval $$\left( {n + {1 \over 2},n + 1} \right)$$
C
A unique point in the interval $$\left( {n,\,n + 1} \right)$$
D
Two points in the interval $$\left( {n,\,n + 1} \right)$$
4
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$\theta ,\,\varphi \, \in \,\left[ {0,2\pi } \right]$$ be such that
$$2\cos \theta \left( {1 - \sin \,\varphi } \right) = {\sin ^2}\theta \,\,\left( {\tan {\theta \over 2} + \cot {\theta \over 2}} \right)\cos \varphi - 1,\,\tan \left( {2\pi - \theta } \right) > 0$$ and $$ - 1 < \sin \theta \, < - {{\sqrt 3 } \over 2},$$

then $$\varphi $$ cannot satisfy

A
$$0 < \varphi < {\pi \over 2}$$
B
$${\pi \over 2} < \varphi < {{4\pi } \over 3}$$
C
$${{4\pi } \over 3} < \varphi < {{3\pi } \over 2}$$
D
$${{3\pi } \over 2} < \varphi < 2\pi $$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12