1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.

Consider the statements:
$$P:$$ There exists some $$x \in R$$ such that $$f\left( x \right) + 2x = 2\left( {1 + {x^2}} \right)$$
$$Q:\,\,$$ There exists some $$x \in R$$ such that $$2\,f\left( x \right) + 1 = 2x\left( {1 + x} \right)$$
Then

A
both $$P$$ and $$Q$$ are true
B
$$P$$ is true and $$Q$$ is false
C
$$P$$ is false and $$Q$$ is true
D
both $$P$$ and $$Q$$ are false
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

The total number of local maxima and local minima of the function

$$f(x) = \left\{ {\matrix{ {{{(2 + x)}^3},} & { - 3 < x \le - 1} \cr {{x^{2/3}},} & { - 1 < x < 2} \cr } } \right.$$ is

A
0
B
1
C
2
D
3
3
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
The tangent to the curve $$y = {e^x}$$ drawn at the point $$\left( {c,{e^c}} \right)$$ intersects the line joining the points $$\left( {c - 1,{e^{c - 1}}} \right)$$ and $$\left( {c + 1,{e^{c + 1}}} \right)$$
A
on the left of $$x=c$$
B
on the right of $$x=c$$
C
at no point
D
at all points
4
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
If a continuous function $$f$$ defined on the real line $$R$$, assumes positive and negative values in $$R$$ then the equation $$f(x)=0$$ has a root in $$R$$. For example, if it is known that a continuous function $$f$$ on $$R$$ is positive at some point and its minimum value is negative then the equation $$f(x)=0$$ has a root in $$R$$.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.

The line $$y=x$$ meets $$y = k{e^x}$$ for $$k \le 0$$ at

A
no point
B
one point
C
two points
D
more than two points
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12