1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
Consider the statements:
$$P:$$ There exists some $$x \in R$$ such that $$f\left( x \right) + 2x = 2\left( {1 + {x^2}} \right)$$
$$Q:\,\,$$ There exists some $$x \in R$$ such that $$2\,f\left( x \right) + 1 = 2x\left( {1 + x} \right)$$
Then
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
The total number of local maxima and local minima of the function
$$f(x) = \left\{ {\matrix{
{{{(2 + x)}^3},} & { - 3 < x \le - 1} \cr
{{x^{2/3}},} & { - 1 < x < 2} \cr
} } \right.$$ is
3
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
The tangent to the curve $$y = {e^x}$$ drawn at the point $$\left( {c,{e^c}} \right)$$ intersects the line joining the points $$\left( {c - 1,{e^{c - 1}}} \right)$$ and $$\left( {c + 1,{e^{c + 1}}} \right)$$
4
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
If a continuous function $$f$$ defined on the real line $$R$$, assumes positive and negative values in $$R$$ then the equation $$f(x)=0$$ has a root in $$R$$. For example, if it is known that a continuous function $$f$$ on $$R$$ is positive at some point and its minimum value is negative then the equation $$f(x)=0$$ has a root in $$R$$.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.
The line $$y=x$$ meets $$y = k{e^x}$$ for $$k \le 0$$ at
Questions Asked from Application of Derivatives (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2023 Paper 1 Online (1)
JEE Advanced 2020 Paper 1 Offline (1)
JEE Advanced 2017 Paper 1 Offline (3)
JEE Advanced 2016 Paper 1 Offline (1)
JEE Advanced 2013 Paper 2 Offline (2)
IIT-JEE 2012 Paper 2 Offline (2)
IIT-JEE 2008 Paper 1 Offline (1)
IIT-JEE 2007 (4)
IIT-JEE 2005 Screening (1)
IIT-JEE 2004 Screening (2)
IIT-JEE 2003 Screening (2)
IIT-JEE 2002 Screening (2)
IIT-JEE 2001 Screening (3)
IIT-JEE 2000 Screening (5)
IIT-JEE 1999 (1)
IIT-JEE 1998 (2)
IIT-JEE 1997 (1)
IIT-JEE 1995 Screening (3)
IIT-JEE 1994 (2)
IIT-JEE 1987 (2)
IIT-JEE 1986 (1)
IIT-JEE 1983 (4)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus