1
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0
Let $$f$$ be a real-valued function defined on the interval $$\left( {0,\infty } \right)$$
by $$\,f\left( x \right) = \ln x + \int\limits_0^x {\sqrt {1 + \sin t\,} dt.} $$ then which of the following
statement(s) is (are) true?
by $$\,f\left( x \right) = \ln x + \int\limits_0^x {\sqrt {1 + \sin t\,} dt.} $$ then which of the following
statement(s) is (are) true?
2
IIT-JEE 2009 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Area of the region bounded by the curve $$y = {e^x}$$ and lines $$x=0$$ and $$y=e$$ is
3
IIT-JEE 1999
MCQ (More than One Correct Answer)
+3
-0.75
For which of the following values of $$m$$, is the area of the region bounded by the curve $$y = x - {x^2}$$ and the line $$y=mx$$ equals $$9/2$$?
Questions Asked from Application of Integration (MCQ (Multiple Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & MeasurementsMotionLaws of MotionWork Power & EnergyImpulse & MomentumRotational MotionProperties of MatterHeat and ThermodynamicsSimple Harmonic MotionWavesGravitation
Electricity
ElectrostaticsCurrent ElectricityCapacitorMagnetismElectromagnetic InductionAlternating CurrentElectromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of ChemistryStructure of AtomRedox ReactionsGaseous StateChemical EquilibriumIonic EquilibriumSolutionsThermodynamicsChemical Kinetics and Nuclear ChemistryElectrochemistrySolid StateSurface Chemistry
Inorganic Chemistry
Periodic Table & PeriodicityChemical Bonding & Molecular StructureIsolation of ElementsHydrogens-Block Elementsp-Block Elementsd and f Block ElementsCoordination CompoundsSalt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and InequalitiesSequences and SeriesMathematical Induction and Binomial TheoremMatrices and DeterminantsPermutations and CombinationsProbabilityVector Algebra3D GeometryStatisticsComplex Numbers
Trigonometry
Coordinate Geometry
Calculus