1
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let f : [0, $$\infty $$) $$ \to $$ R be a continuous function such that

$$f(x) = 1 - 2x + \int_0^x {{e^{x - t}}f(t)dt} $$ for all x $$ \in $$ [0, $$\infty $$). Then, which of the following statement(s) is (are) TRUE?
A
The curve y = f(x) passes through the point (1, 2)
B
The curve y = f(x) passes through the point (2, $$-$$1)
C
The area of the region $$\{ (x,y) \in [0,1] \times R:f(x) \le y \le \sqrt {1 - {x^2}} \} $$ is $${{\pi - 2} \over 4}$$
D
The area of the region $$\{ (x,y) \in [0,1] \times R:f(x) \le y \le \sqrt {1 - {x^2}} \} $$ is $${{\pi - 1} \over 4}$$
2
JEE Advanced 2017 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
If the line x = $$\alpha $$ divides the area of region R = {(x, y) $$ \in $$R2 : x3 $$ \le $$ y $$ \le $$ x, 0 $$ \le $$ x $$ \le $$ 1} into two equal parts, then
A
2$$\alpha $$4 $$-$$ 4$$\alpha $$2 + 1 =0
B
$$\alpha $$4 + 4$$\alpha $$2 $$-$$ 1 =0
C
$${1 \over 2} < \alpha < 1$$
D
0 < $$\alpha $$ $$ \le $$ $${1 \over 2}$$
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$F:R \to R$$ be a thrice differentiable function. Suppose that
$$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F\left( x \right) < 0$$ for all $$x \in \left( {{1 \over 2},3} \right).$$ Let $$f\left( x \right) = xF\left( x \right)$$ for all $$x \in R.$$

If $$\int_1^3 {{x^2}F'\left( x \right)dx = - 12} $$ and $$\int_1^3 {{x^3}F''\left( x \right)dx = 40,} $$ then the correct expression(s) is (are)

A
$$9f'\left( 3 \right) + f'\left( 1 \right) - 32 = 0$$
B
$$\int_1^3 {f\left( x \right)dx = 12} $$
C
$$9f'\left( 3 \right) - f'\left( 1 \right) + 32 = 0$$
D
$$\int_1^3 {f\left( x \right)dx = -12} $$
4
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$S$$ be the area of the region enclosed by $$y = {e^{ - {x^2}}}$$, $$y=0$$, $$x=0$$, and $$x=1$$; then
A
$$S \ge {1 \over e}$$
B
$$S \ge 1 - {1 \over e}$$
C
$$S \le {1 \over 4}\left( {1 + {1 \over {\sqrt e }}} \right)$$
D
$$S \le {1 \over {\sqrt 2 }} + {1 \over {\sqrt e }}\left( {1 - {1 \over {\sqrt 2 }}} \right)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12