NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2018 Paper 2 Offline

Numerical
Let f : R $$ \to $$ R be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation $${{dy} \over {dx}} = (2 + 5y)(5y - 2)$$, then the value of $$\mathop {\lim }\limits_{n \to - \infty } f(x)$$ is ...........
Your Input ________

Answer

Correct Answer is 0.4

Explanation

We have,

$${{dy} \over {dx}} = (2 + 5y)(5y - 2)$$

$$ \Rightarrow {{dy} \over {25{y^2} - 4}} = dx$$

$$ \Rightarrow {1 \over {25}}\left( {{{dy} \over {{y^2} - {4 \over {25}}}}} \right) = dx$$

On integrating both sides, we get

$${1 \over {25}}\int {{{dy} \over {{y^2} - {{\left( {{2 \over 5}} \right)}^2}}} = \int {dx} } $$

$$ \Rightarrow {1 \over {25}} \times {1 \over {2 \times 2/5}}\log \left| {{{y - 2/5} \over {y + 2/5}}} \right| = x + C$$

$$ \Rightarrow \log \left| {{{5y - 2} \over {5y + 2}}} \right| = 20(x + C)$$

$$ \Rightarrow \left| {{{5y - 2} \over {5y + 2}}} \right| = A{e^{20x}}$$ [$$ \because $$ e20C = A]

when x = 0 $$ \Rightarrow $$ y = 0, then A = 1

$$ \therefore $$ $$\left| {{{5y - 2} \over {5y + 2}}} \right| = {e^{20x}}$$

$$\mathop {\lim }\limits_{x \to - \infty } \left| {{{5f(x) - 2} \over {5f(x) + 2}}} \right| = \mathop {\lim }\limits_{x \to - \infty } {e^{20x}}$$

$$ \Rightarrow \mathop {\lim }\limits_{n \to - \infty } \left| {{{5f(x) - 2} \over {5f(x) + 2}}} \right| = 0$$

$$ \Rightarrow \mathop {\lim }\limits_{n \to - \infty } 5f(x) - 2 = 0$$

$$ \Rightarrow \mathop {\lim }\limits_{n \to - \infty } f(x) = {2 \over 5} = 0.4$$
2

IIT-JEE 2011 Paper 1 Offline

Numerical

Let $$f:[1,\infty ) \to [2,\infty )$$ be a differentiable function such that $$f(1) = 2$$. If $$6\int\limits_1^x {f(t)dt = 3xf(x) - {x^3} - 5} $$ for all $$x \ge 1$$, then the value of f(2) is ___________.

Your Input ________

Answer

Correct Answer is 6

Explanation

It is given that

$$6\int\limits_1^x {f(t)dt = 3xf(x) - {x^3}} - 5$$

$$ \Rightarrow 6f(x) = 3f(x) + 3xf'(x) - 3{x^2}$$

$$ \Rightarrow 3f(x) = 3xf'(x) - 3{x^2} \Rightarrow xf'(x) - f(x) = {x^2}$$

$$ \Rightarrow x{{dy} \over {dx}} - y = {x^2} \Rightarrow {{dy} \over {dx}} - {1 \over x}y = x$$ .... (1)

Now, $$I.F. = {e^{\int { - {1 \over x}dx} }} = {e^{ - {{\log }_e}x}}$$

Multiplying Eq. (1) both sides by $${1 \over x}$$, we get

$${1 \over x}{{dy} \over {dx}} - {1 \over {{x^2}}}y = 1 \Rightarrow {d \over {dx}}\left( {y.{1 \over x}} \right) = 1$$

Integrating, we get

$${y \over x} = x + c$$

Substituting x = 1 and y = 2, we get

$$ \Rightarrow 2 = 1 + c \Rightarrow c = 1 \Rightarrow y = {x^2} + x$$

$$ \Rightarrow f(x) = {x^2} + x \Rightarrow f(2) = 6$$

3

IIT-JEE 2011 Paper 2 Offline

Numerical
Let $$y'\left( x \right) + y\left( x \right)g'\left( x \right) = g\left( x \right),g'\left( x \right),y\left( 0 \right) = 0,x \in R,$$ where $$f'(x)$$ denotes $${{df\left( x \right)} \over {dx}}$$ and $$g(x)$$ is a given non-constant differentiable function on $$R$$ with $$g(0)=g(2)=0.$$ Then the value of $$y(2)$$ is
Your Input ________

Answer

Correct Answer is 0

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12