1
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
For $x \in \mathbb{R}$, let $y(x)$ be a solution of the differential equation

$\left(x^2-5\right) \frac{d y}{d x}-2 x y=-2 x\left(x^2-5\right)^2$ such that $y(2)=7$.

Then the maximum value of the function $y(x)$ is :
2
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
If $y(x)$ is the solution of the differential equation

$$x d y-\left(y^{2}-4 y\right) d x=0 \text { for } x > 0, y(1)=2,$$

and the slope of the curve $y=y(x)$ is never zero, then the value of $10 y(\sqrt{2})$ is
3
JEE Advanced 2018 Paper 2 Offline
Numerical
+3
-0
Let f : R $$\to$$ R be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation $${{dy} \over {dx}} = (2 + 5y)(5y - 2)$$, then the value of $$\mathop {\lim }\limits_{n \to - \infty } f(x)$$ is ...........
4
IIT-JEE 2011 Paper 1 Offline
Numerical
+3
-1

Let $$f:[1,\infty ) \to [2,\infty )$$ be a differentiable function such that $$f(1) = 2$$. If $$6\int\limits_1^x {f(t)dt = 3xf(x) - {x^3} - 5}$$ for all $$x \ge 1$$, then the value of f(2) is ___________.