1

JEE Advanced 2015 Paper 2 Offline

MCQ (More than One Correct Answer)
Let $${E_1}$$ and $${E_2}$$ be two ellipses whose centres are at the origin. The major axes of $${E_1}$$ and $${E_2}$$ lie along the $$x$$-axis and the $$y$$-axis, respectively. Let $$S$$ be the circle $${x^2} + {\left( {y - 1} \right)^2} = 2$$. The straight line $$x+y=3$$ touches the curves $$S$$, $${E_1}$$ and $${E_2}$$ at $$P, Q$$ and $$R$$ respectively. Suppose that $$PQ = PR = {{2\sqrt 2 } \over 3}$$. If $${e_1}$$ and $${e_2}$$ are the eccentricities of $${E_1}$$ and $${E_2}$$, respectively, then the correct expression(s) is (are)
A
$$\mathop e\nolimits_1^2 + \mathop e\nolimits_2^2 = {{43} \over {40}}$$
B
$${e_1}{e_2} = {{\sqrt 7 } \over {2\sqrt {10} }}$$
C
$$\left| {\mathop e\nolimits_1^2 + \mathop e\nolimits_2^2 } \right| = {5 \over 8}$$
D
$${e_1}{e_2} = {{\sqrt 3 } \over 4}$$

Explanation

Here, $${E_1}:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,\,(a > b)$$

$${E_2}:{{{x^2}} \over {{c^2}}} + {{{y^2}} \over {{d^2}}} = 1,\,(c < d)$$

and $$S:{x^2} + {(y - 1)^2} = 2$$

as tangent to E1, E2 and S is $$x + y = 3$$.

Let the point of contact of tangent be $$({x_1},{y_1})$$ to S.

$$\therefore$$ $$x\,.\,{x_1} + y\,.\,{y_1} - (y + {y_1}) + 1 = 2$$

or $$x{x_1} + y{y_1} - y = (1 + {y_1})$$, same as $$x + y = 3$$.

$$ \Rightarrow {{{x_1}} \over 1} = {{{y_1} - 1} \over 1} = {{1 + {y_1}} \over 3}$$

i.e. $${x_1} = 1$$ and $${y_1} = 2$$

$$\therefore$$ $$P = (1,2)$$

Since, $$PR = PQ = {{2\sqrt 2 } \over 3}$$. Thus, by parametric form,

$${{x - 1} \over { - 1/\sqrt 2 }} = {{y - 2} \over {1/\sqrt 2 }} = \pm {{2\sqrt 2 } \over 3}$$

$$ \Rightarrow \left( {x = {5 \over 3},y = {4 \over 3}} \right)$$

and $$\left( {x = {1 \over 3},y = {8 \over 3}} \right)$$

$$\therefore$$ $$Q = \left( {{5 \over 3},{4 \over 3}} \right)$$ and $$R = \left( {{1 \over 3},{8 \over 3}} \right)$$

Now, equation of tangent at Q on ellipse E1 is

$${{x\,.\,5} \over {{a^2}\,.\,3}} + {{y\,.\,4} \over {{b^2}\,.\,3}} = 1$$

On comparing with x + y = 3, we get

$${a^2} = 5$$ and $${b^2} = 4$$

$$\therefore$$ $$e_1^2 = 1 - {{{b^2}} \over {{a^2}}} = 1 - {4 \over 5} = {1 \over 5}$$ ..... (i)

Also, equation of tangent at R on ellipse E2 is

$${{x\,.\,1} \over {{a^2}\,.\,3}} + {{y\,.\,8} \over {{b^2}\,.\,3}} = 1$$

On comparing with x + y = 3, we get

$${a^2} = 1,\,{b^2} = 8$$

$$\therefore$$ $$e_2^2 = 1 - {{{a^2}} \over {{b^2}}} = 1 - {1 \over 8} = {7 \over 8}$$ ...... (ii)

Now, $$e_1^2\,.\,e_2^2 = {7 \over {40}} \Rightarrow {e_1}{e_2} = {{\sqrt 7 } \over {2\sqrt {10} }}$$

and $$e_1^2 + e_2^2 = {1 \over 5} + {7 \over 8} = {{43} \over {40}}$$

Also, $$\left| {e_1^2 - e_2^2} \right| = \left| {{1 \over 5} - {7 \over 8}} \right| = {{27} \over {40}}$$

2

IIT-JEE 2012 Paper 1 Offline

MCQ (More than One Correct Answer)
Tangents are drawn to the hyperbola $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1,$$ parallel to the straight line $$2x - y = 1,$$ The points of contact of the tangents on the hyperbola are
A
$$\left( {{9 \over {2\sqrt 2 }},{1 \over {\sqrt 2 }}} \right)$$
B
$$\left( -{{9 \over {2\sqrt 2 }},-{1 \over {\sqrt 2 }}} \right)$$
C
$$\left( {3\sqrt 3 , - 2\sqrt 2 } \right)$$
D
$$\left( -{3\sqrt 3 , 2\sqrt 2 } \right)$$
3

IIT-JEE 2011 Paper 2 Offline

MCQ (More than One Correct Answer)

Let L be a normal to the parabola y2 = 4x. If L passes through the point (9, 6), then L is given by

A
y $$-$$ x + 3 = 0
B
y + 3x $$-$$ 33 = 0
C
y + x $$-$$ 15 = 0
D
7 $$-$$ 2x + 12 = 0

Explanation

The equation of normal is

y = mx $$-$$ 2m $$-$$ m3

As (9, 6) lies on it, 6 = 9m $$-$$ 2m $$-$$ m33 $$-$$ 7m + 6 = 0

The roots are m = 1, 2, $$-$$3. So the normal are

y = x $$-$$ 3, y = 2x $$-$$ 12, y = $$-$$3x + 33.

4

IIT-JEE 2011 Paper 2 Offline

MCQ (More than One Correct Answer)
Let $$L$$ be a normal to the parabola $${y^2} = 4x.$$ If $$L$$ passes through the point $$(9, 6)$$, then $$L$$ is given by
A
$$y - x + 3 = 0$$
B
$$y + 3x - 33 = 0$$
C
$$y + x - 15 = 0$$
D
$$y - 2x + 12 = 0$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12