NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2009

MCQ (More than One Correct Answer)
In a triangle $$ABC$$ with fixed base $$BC$$, the vertex $$A$$ moves such that $$$\cos \,B + \cos \,C = 4{\sin ^2}{A \over 2}.$$$

If $$a, b$$ and $$c$$ denote the lengths of the sides of the triangle opposite to the angles $$A, B$$ and $$C$$, respectively, then

A
$$b+c=4a$$
B
$$b+c=2a$$
C
locus of point $$A$$ is an ellipse
D
locus of point $$A$$ is a pair of straight lines
2

IIT-JEE 2008

MCQ (More than One Correct Answer)
Let $$P\left( {{x_1},{y_1}} \right)$$ and $$Q\left( {{x_2},{y_2}} \right),{y_1} < 0,{y_2} < 0,$$ be the end points of the latus rectum of the ellipse $${x^2} + 4{y^2} = 4.$$ The equations of parabolas with latus rectum $$PQ$$ are
A
$${x^2} + 2\sqrt 3 \,\,y = 3 + \sqrt 3 $$
B
$${x^2} - 2\sqrt 3 \,\,y = 3 + \sqrt 3 $$
C
$${x^2} + 2\sqrt 3 \,\,y = 3 - \sqrt 3 $$
D
$${x^2} - 2\sqrt 3 \,\,y = 3 - \sqrt 3 $$
3

IIT-JEE 2006

MCQ (More than One Correct Answer)
Let a hyperbola passes through the focus of the ellipse $${{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1$$. The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the produced of eccentricities of given ellipse and hyperbola is $$1$$, then
A
the equation of hyperbola is $${{{x^2}} \over 9} + {{{y^2}} \over {16}} = 1$$
B
the equation of hyperbola is $${{{x^2}} \over 9} + {{{y^2}} \over {25}} = 1$$
C
focus of hyperbola is $$(5, 0)$$
D
vertex of hyperbola is $$\left( {5\sqrt 3 ,0} \right)$$
4

IIT-JEE 2006

MCQ (More than One Correct Answer)
The equations of the common tangents to the parabola $$y = {x^2}$$ and $$y = - {\left( {x - 2} \right)^2}$$ is/are
A
$$y = 4\left( {x - 1} \right)$$
B
$$y=0$$
C
$$y = - 4\left( {x - 1} \right)$$
D
$$y = - 30x - 50$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12