1
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$\alpha $$ and $$\beta $$ be the roots of $${x^2} - 6x - 2 = 0,$$ with $$\alpha > \beta .$$ If $${a_n} = {\alpha ^n} - {\beta ^n}$$ for $$\,n \ge 1$$ then the value of $${{{a_{10}} - 2{a_8}} \over {2{a_9}}}$$ is
A
1
B
2
C
3
D
4
2
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$\left( {{x_0},{y_0}} \right)$$ be the solution of the following equations
$$\matrix{ {{{\left( {2x} \right)}^{\ell n2}}\, = {{\left( {3y} \right)}^{\ell n3}}} \cr {{3^{\ell nx}}\, = {2^{\ell ny}}} \cr } $$
Then $${x_0}$$ is
A
$${1 \over 6}$$
B
$${1 \over 3}$$
C
$${1 \over 2}$$
D
$$6$$
3
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
A value of $$b$$ for which the equations $$$\matrix{ {{x^2} + bx - 1 = 0} \cr {{x^2} + x + b = 0} \cr } $$$

have one root in common is

A
$$ - \sqrt 2 $$
B
$$ - i\sqrt 3$$
C
$$i\sqrt 5 $$
D
$$\sqrt 2 $$
4
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
Let $$p$$ and $$q$$ be real numbers such that $$p \ne 0,\,{p^3} \ne q$$ and $${p^3} \ne - q.$$ If $${p^3} \ne - q.$$ and $$\,\beta $$ are nonzero complex numbers satisfying $$\alpha \, + \beta = - p\,$$ and $${\alpha ^3} + {\beta ^3} = q,$$ then a quadratic equation having $${\alpha \over \beta }$$ and $${\beta \over \alpha }$$ as its roots is
A
$$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} + 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
B
$$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} - 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
C
$$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} - 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
D
$$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} + 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12